ES1004 Econometrics by Example

Lecture 9: Stationary and Non-Stationary Time Series

Dr. Hany Abdel-Latif

Swansea University, UK

Gujarati textbook, second edition [chapter 13]

27th August 2016

Dr. Hany Abdel-Latif (2016)

ES1004ebe Lecture 9

Stationary Time Series

Time Series Econometrics

- stationary and nonstationary time series
- cointegration and error correction models 14
- asset price volatility: the ARCH and GARCH models ❶
- economic forecasting
- previous course on time series econometrics

- 20

Introduction

- regression analysis of time series data assumes that series are stationarity
 - its mean and variance are constant over time
 - covariance depends only on the distance between the two periods and not on time
 - a time series with these characteristics is know as weakly or covariance stationary

• a time series is an example of a sequence of random variables ordered in time]

strictly stationary

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Example: Exchange Rate

- data table13_1.xls
 - the exchange rate between the us dollar and the euro EX; dollars per unit of euro
 - daily from January 4, 2000 to May 8,2008 [2355 observations]
 - are not continuous; exchange rate markets are not always open every day and because of holidays
 - see figure next slide

Exchange Rate

Dr. Hany Abdel-Latif (2016)

Stationary Time Series

Importance of Stationary Time Series

- most economic time series in level form are nonstationary
 - such series often exhibit an upward or downward trends over a sustained period of time
 - but such a trend is often stochastic and not deterministic
- regressing a nonstationary time series on one or more nonstationary time series may often lead to spurious [meaningless] regression
 - high R^2 , statistically significant regression coefficients, but not reliable

Diagnostic Tools

- it is important to find out if a time series is stationary
- three ways to examine the stationary of a time series
 - graphical analysis
 - 2 correlogram
 - unit root tests

э

Graphical Analysis

"anyone who tries to analyse analyse a time series without plotting it first is asking for trouble"

Chatfield (2004)

э

Dr. Hany Abdel-Latif (2016)

ES1004ebe Lecture 9

< □ > < □ > < □ > < □ > < □ > < □ >

Graphical Analysis

Autocorrelation Function ACF

- shows if the correlation of the time series over several lags decays quickly or slowly
 - if it does decay very slowly, perhaps the time series is nonstationary
- the ACF at lag k is defined as covariance at lag k divided by variance

$$\rho_k = \frac{\gamma_k}{\gamma_0} \tag{1}$$

- akaike or schwarz information criterion to determine the lag length; or
- compute ACF up to one-quarter to one-third of series length

Dr. Hany Abdel-Latif (2016)

A B F A B F

Correlogram I

- a plot of $\hat{\rho}_k$ against k, the lag length, the (sample) correlogram
- test the statistical significance of each autocorrelation coefficient in the correlogram by
 - computing its standard error; or
 - find out if the sum of autocorrelation coefficients is statistically significant (distributed as chi-square) using the Q statistic, where *n* is the sample size and *m* is the number of lags (=df)

$$Q = n \sum_{k=1}^{k=m} \hat{\rho}_k^2$$

A B M A B M

Tests of Stationarity

Correlogram II

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.998	0.998	2350.9	0.000
	ų.	2	0.997	0.004	4695.7	0.000
	l (I	3	0.995	-0.017	7034.2	0.000
	ų į	4	0.994	0.012	9366.6	0.000
	l (I	5	0.992	-0.014	11693.	0.000
	ų į	6	0.991	0.012	14013.	0.000
	l (i	7	0.989	-0.020	16326.	0.000
	l (I	8	0.988	-0.018	18633.	0.000
	l II	9	0.986	0.006	20934.	0.000
	ų.	10	0.984	0.001	23228.	0.000
	l II	11	0.983	0.001	25516.	0.000
	l (i	12	0.981	-0.024	27796.	0.000
	l (I	13	0.979	-0.019	30070.	0.000
	l II	14	0.978	-0.001	32337.	0.000
	l 🕴	15	0.976	0.016	34597.	0.000
	l III	16	0.974	-0.007	36850.	0.000
	l (I	17	0.973	-0.010	39097.	0.000
	ų.	18	0.971	0.020	41336.	0.000

э.

Unit Root Test I

• the unit root test for the exchange rate can be expressed as follows

$$\Delta LEX_t = \beta_1 + \beta_2 t + \beta_3 LEX_{t-1} + u_t \tag{3}$$

• we regress the first differences of the log of exchange rate on the trend variable and the one-period lagged value of the exchange rate

Unit Root Test II

- the null hypothesis is that β_3 , the coeffcieint of LEX_{t-1} , is zero
 - the unit root hypothesis
- the alternative hypothesis is $\beta_3 < 0$
- a non-rejection of the null hypothesis would suggest that the time series under consideration is nonstationary
- cannot use t test because it assumes stationarity

14 / 40

Dr. Hany Abdel-Latif (2016)

Dickey-Fuller Test

- dickey and fuller developed a τ [tau] test; critical values are calculated by simulations
- estimate Eq. 3 by OLS and look at the routinely calculated t value of $\hat{\beta_3}$ but use the DF critical values
 - reject the null if computed $t~(=\tau)$ [in absolute value] exceeds the DF critical value
 - consider the absolute value as the coefficient $\beta_{\rm 3}$ is expected be negative

15 / 40

イロト イポト イヨト イヨト

Dickey-Fuller Test: Example

Dependent Variable: DLNEX Method: Least Squares Date: 08/27/16 Time: 13:20 Sample (adjusted): 2 2355 Included observations: 2354 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C TIME LNEX(·1)	-0.000847 1.21E-06 -0.004088	0.000292 3.22E-07 0.001351	-2.899171 3.761595 -3.026490	0.0038 0.0002 0.0025
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.005995 0.005149 0.005911 0.082147 8739.512 7.089626 0.000852	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watso	ent var nt var terion rion n criter. n stat	0.000113 0.005926 -7.422695 -7.415349 -7.420020 1.999138

The Economic Society

3

Dickey-Fuller Test: Practical Aspects

- the DF test can be performed in three different forms
- 1 random walk

 $\Delta LEX_t = \beta_3 LEX_{t-1} + u_t$

2 random walk with drift

 $\Delta LEX_t = \beta_1 + \beta_3 LEX_{t-1} + u_t$

- 3 random walk with drift around deterministic trend $\Delta LEX_t = \beta_1 + \beta_2 t + \beta_3 LEX_{t-1} + u_t$
 - same null hypothesis but the critical DF values are different
 - guard against model specification errors

Augmented Dickey-Fuller Test

- if the error term u_t is correlated, use the ADF test
- add the lagged values of the dependent variable as follows

$$\Delta LEX_t = \beta_1 + \beta_2 t + \beta_3 LEX_{t-1} + \sum_{t=1}^m \alpha_i \Delta LEX_{t-1} + \epsilon_t$$
(4)

- ϵ_t is a pure white noise error term
- *m* is the maximum length of the lagged dependent variable

18 / 40

white noise

Dr. Hany Abdel-Latif (2016)

Tests of Stationarity

ADF: EViews I

View	Proc	Object	Properties	Print	Name	Freeze	D	efau	ılt		Sort	Edit+/-	Smpl+/-
	Spread	lSheet				nex							
	Graph					27/16	13	:1Q					
	Descrij	otive <u>S</u> t	atistics & Te	sts	ŀ	/Desk	op	.Tak	le13_	1.xls	;'		_
_	<u>O</u> ne-W	/ay Tab	ulation										
	⊆orrel	ogram											
	Long-r	un Varia	ance										
	Unit R	oot Tesl	t										
	Breakp	oint Un	iit Root Test.										
	<u>V</u> arian	ce Ratio	o Test										
	<u>B</u> DS I⊓	idepenc	lence Test										
	Eoreca	ast Eval	uation										
	Label												
1	5	0.1	45485			-							
	n	11 1	4n4.10		1				1		< D >	 < - □ 	

Dr. Hany Abdel-Latif (2016)

19 / 40

ADF: EViews II

Vi

ew Proc	Object Properties Print Name	Freeze Default 💌	Sort Edit+/- S	
ľ	Test type Augmented Dickey-Fuller	nit Root Test		
1 2 3 4 5 6 7 8 9	Test for unit root in © Level C 1st difference C 2nd difference Include in test equation © Intercept C Trond and intercept	Lag length	n: ton 🔽	
10 11 12 13 14 15	C None	C User specified:	4 Cancel	The Economic Society
Dr. Han	y Abdel-Latif (2016)	ES1004ebe Lecture 9	Stationary Time S	Series 20 / 4

ADF: Intercept I

Null Hypothesis: LNEX has a unit root Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=26)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		0.171718	0.9708
Test critical values:	1% level	-3.432933	
	5% level	-2.862567	
	10% level	-2.567362	

*MacKinnon (1996) one-sided p-values.

3

Dr. Hany Abdel-Latif (2016)

ES1004ebe Lecture 9

(日) (同) (三) (三)

ADF: Intercept II

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LNEX) Method: Least Squares Date: 08/27/16 Time: 13:43 Sample (adjusted): 2 2355 Included observations: 2354 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LNEX(·1) C	0.000130 9.82E-05	0.000755 0.000149	0.171718 0.656895	0.8637 0.5113
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000013 -0.000413 0.005928 0.082641 8732.449 0.029487 0.863674	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	ent var nt var terion ion n criter. n stat	0.000113 0.005926 -7.417544 -7.412647 -7.415760 1.995578

3

ADF: Trend and Intercept

Null Hypothesis: LNEX has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=26)

		t-Statistic	Prob.*
Augmented Dickey-Fu	-3.026490	0.1251	
Test critical values:	1% level	-3.961944	
	5% level	-3.411717	
	10% level	-3.127739	

*MacKinnon (1996) one-sided p-values.

э

Dr. Hany Abdel-Latif (2016)

ES1004ebe Lecture 9

Stationary Time Series

< □ > < □ > < □ > < □ > < □ > < □ >

ADF: None

Null Hypothesis: LNEX has a unit root Exogenous: None Lag Length: 0 (Automatic - based on SIC, maxlag=26)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ler test statistic 1% level 5% level 10% level	0.672671 -2.565945 -1.940958 -1.616609	0.8611
Test critical values:	1% level 5% level 10% level	-2.565945 -1.940958 -1.616609	

*MacKinnon (1996) one-sided p-values.

3

Dr. Hany Abdel-Latif (2016)

ES1004ebe Lecture 9

Trend Stationary I

 a common practice to make a trending time series stationary is to remove the trend from it

$$LEX_t = A_1 + A_2t + v_t \tag{5}$$

- *t* is a time trend variable [1,2,...], and *v_t* error term with the usual properties
- after running the regression, we obtain

$$\hat{v} = LEX_t - a_1 - a_2t$$

• \hat{v} represents the detrended *LEX* time series

ES1004ebe Lecture 9

Stationary Time Series

イモトイモト

Exchange Rate Series

Dr. Hany Abdel-Latif (2016)

Stationary Time Series

Trend Stationary II

Dr. Hany Abdel-Latif (2016)

Stationary Time Series

Trend Stationary III

Null Hypothesis: LNEX has a unit root Exogenous: None Lag Length: 0 (Automatic - based on SIC, maxlag=26)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ller test statistic 1% level 5% level	0.672671 -2.565945 -1.940958	0.8611
	10% level	-1.616609	

*MacKinnon (1996) one-sided p-values.

Null Hypothesis: V has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=26)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ller test statistic 1% level 5% level 10% level	-3.025477 -3.432933 -2.862567 -2.567362	0.0327

3

*MacKinnon (1996) one-sided p-values.

Trend Stationary IV

- a time series becomes stationary after detrend; trend stationary (stochastic) process TSP
- a process with a deterministic trend is nonstationary but not a unit root process

Difference Stationary I

• if a time series becomes stationary after taking its first difference, it is called a difference stationary (stochastic process) DSP

э

Dr. Hany Abdel-Latif (2016)

ES1004ebe Lecture 9

Stationary Time Series

< □ > < □ > < □ > < □ > < □ > < □ >

Difference Stationary II

э

Dr. Hany Abdel-Latif (2016)

ES1004ebe Lecture 9

Stationary Time Series

Difference Stationary III

Date: 08/27/16 Time: 16:37 Sample: 1 2355 Included observations: 2354

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
ll.		1	0.002	0.002	0.0113	0.915
l I		2	-0.001	-0.001	0.0125	0.994
(I)	0	3	-0.017	-0.017	0.6673	0.881
ψ	l 🖞	4	0.051	0.052	6.9213	0.140
<u>(</u>)	[5	-0.036	-0.037	10.017	0.075
ų.	III	6	0.016	0.016	10.643	0.100
ų.	III	7	0.020	0.022	11.582	0.115
()	()	8	-0.024	-0.028	12.970	0.113
ų.	μ	9	0.003	0.008	12.997	0.163
(I)	()	10	-0.013	-0.015	13.379	0.203
l I	II	11	-0.003	-0.004	13.396	0.268
ų.	II	12	0.012	0.016	13.735	0.318
h h		13	0.034	0.030	16.482	0.224
l I	II	14	-0.003	-0.001	16.501	0.284
di 🛛	()	15	-0.032	-0.031	18.857	0.220
ų.		16	0.011	0.010	19.140	0.261
ll ll	l	17	0.002	0.000	19.149	0.320

э

Dr. Hany Abdel-Latif (2016)

Difference Stationary IV

Null Hypothesis: D(LNEX) has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=26)

		t-Statistic	Prob.*
<u>Augmented Dickey-Fu</u> Test critical values:	ler test statistic 1% level 5% level 10% level	-48.38514 -3.432934 -2.862568 -2.567362	0.0001

*MacKinnon (1996) one-sided p-values.

3

Dr. Hany Abdel-Latif (2016)

ES1004ebe Lecture 9

Stationary Time Series

< □ > < □ > < □ > < □ > < □ > < □ >

Integrated Time Series I

- a time series becomes stationary after differencing it once called integrated of order one *l*(1)
- if it has to be differenced twice to become stationary; integrated of order two *I*(2)
- if differenced d times to make it stationary, then it is integrated of order d; l(d)
- a stationary time series is integrated of order zero; I(0)

34 / 40

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Integrated Time Series II

- an *I*(0) series fluctuate around its mean with constant variance, while an *I*(1) series meanders wildly
- i.e., an *I*(0) series is mean reverting, whereas an *I*(1) series does not show such a tendency
- an I(1) series can drift away from the mean permanently that is why said to have a stochastic trend
- the autocorrelations in a correlogram of an I(0) series decline to zero very rapidly as the lag increases, while those of an I(1) decline for slowly
- most nonstationary economic time series do not need to be differenced more than once or twice

Dr. Hany Abdel-Latif (2016)

ES1004ebe Lecture 9

Stationary Time Series

Strictly Stationarity

- a time series is strictly stationary if all moments of its probability distribution and not just the first two (i.e., mean and variance) are invariant over time
- if, however, the stationary process is normal, the weakly stationary stochastic process is also strictly stationary, for the normal process is fully specified by its two moments, mean and variance

Stochastic

- the term "stochastic" comes from the Greek word *stokhos*, which means a target or bullseye
 - anyone who throws darts at a dashboard knows that the process of hitting the bullseye is a random process
 - out of several darts, a few will hit the bullseye, but most of them will be spread around it in a random fashion

Unit Root

$$LEX_t = \beta_1 + \beta_2 t + C \ LEX_{t-1} + u_t$$

• subtract LEX_{t-1} from both sides gives

$$(LEX_t - LEX_{t-1}) = \beta_1 + \beta_2 t + C \ LEX_{t-1} - LEX_{t-1} + u_t$$

$$\Delta LEX_t = \beta_1 + \beta_2 t + \beta_3 LEX_{t-1} + u_t$$

where β₃ = (C - 1)
if C = 1, β₃ will be zero, hence the name unit root

39 / 40

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二頁 - のへで

White Noise

- a purely random, or white noise, time series
- such as a time series has
 - constant mean,
 - constant (i.e., homoscedastic) variance, and is
 - serially uncorrelated
 - its mean is often assumed to be zero
- the error term in the CLRM is assumed to be white noise (stochastic) process $u_t \sim iid(0, \sigma^2)$
 - independently, and identically distributed with zero mean and constant variance

