ES1004 Econometrics by Example

Lecture 8: Dynamic Regression Models

Dr. Hany Abdel-Latif

Swansea University, UK

Gujarati textbook, second edition [chapter 7]

6th August 2016

Dr. Hany Abdel-Latif (2016)

ES1004ebe Lecture 8

Dynamic Regression

CLRM Assumptions

- A₁: model is linear in parameters
- A₂: regressors are fixed non-stochastic
- **A**₃: the expected value of the error term is zero $E(u_i|X) = 0$
- **A**₄: homoscedastic or constant variance of errors $var(u_i|X) = \sigma^2$
- **A**₅: no autocorrelation, $cov(u_i, u_j) = 0, i \neq j$
- A_6 : no multicollinearity; no perfect linear relationships among the Xs A_7 : no specification bias

Basic Idea I

- CLRM assumes the model is 'correctly' specified
 - there is no such thing as a perfect model
- an econometric model tries to capture the main features of an economic phenomenon
 - taking into account the underlying economic theory, prior empirical work, intuition, and research skills
- no model can take into account every single factor that affects a particular object of research

Basic Idea II

- a 'correctly' specified model
 - does not exclude any "core" variables
 - does not include superfluous variables 2
 - a has the suitable functional form
 - has no measurement errors

3

Image: Image:

Basic Idea III

- a 'correctly' specified model ...
 - takes into account outliers in the data
 - the probability distribution of the error term is well specified
 - includes non-stochastic regressors
 - o simultaneity bias

3

(B)

Image: Image:

Equilibrium in Theory

- economic theory is often stated in static or equilibrium form
 - e.g. the equilibrium price of a commodity (or service) is determined by the intersection of the relevant demand and supply curves
- however, equilibrium is not determined instantaneously
 - i.e., a process of trial and error which takes time
- neglecting the dynamic [time] aspect may lead to a specification error

Permanent Income Hypothesis

Milton Friedman

- current consumption is a function of permanent income
- weighted average of quarterly income going back 16 quarters

$$Y_t = A + B_0 X_t + B_1 X_{t-1} + B_2 X_{t-2} + \dots + B_1 6 X_{t-16} + u_t$$
(1)

X_t income in the current period, X_{t-1} income lagged one quarter
 β weights attached to the income in the various quarters

Distributed Lag Model I

• current value of Y is affected by current and lagged values of X

β₀

- the short-run or impact multiplier
- gives the change in the mean value of Y following a unit change in X in the same time period
- if the change in X is kept at the same level thereafter, (β₀ + β₁) gives the change in mean Y in the next period
- the partial sums are called interim or intermediate multipliers

Distributed Lag Model II

• after k periods, we obtain

$$\sum_{0}^{k} \beta_{k} = \beta_{0} + \beta_{1} + \dots + \beta_{k}$$
⁽²⁾

- known as the long run or total multiplier
- gives the ultimate change in mean consumption expenditure following a (sustained) unit increase in the income

Distributed Lag Model: An Example

 $Y_t = constant + 0.4X_t + 0.2X_{t-1} + 0.15X_{t-2} + 0.1X_{t-3}$

- the impact multiplier 0.4, the interim multiplier 0.75, total or long-run multiplier 0.85
- if income increases by \$1000 in year t and assuming this increase is maintained, consumption will increase
 - \$400 in the first year
 - another \$200 in the second year
 - another \$150 in the third year
 - final total increase \$750
 - presumably, the consumer will save \$250

OLS Estimation

- we can estimate Eq. 1 by the usual OLS method
- however, this is not practical
 - how do we decide how many lagged terms we use
 - 2 using several lagged terms leads to fewer degrees of freedom to do meaningful statistical analysis especially of the sample size is small
 - successive values of the lagged term are likely to be correlated causing multicollinarity and imprecise estimation of the regression coefficients

э.

Koyck Distributed Lag Model I

• we can express Eq. 1 in a general form as

$$Y_t = A + B_0 X_t + B_1 X_{t-1} + B_2 X_{t-2} + \dots + u_t$$
(3)

- infinite DLM as we have not defined the length of the lag [how far back in time we want to travel]
- note that Eq. 1 represents a finite DLM with 16 lagged terms

э.

12 / 29

Dr. Hany Abdel-Latif (2016)

A B M A B M

Koyck Distributed Lag Model II

- Koyck uses the geometric probability distribution to estimate the parameters of Eq. 3
- assuming that all the β coefficients in Eq. 3 have the same sign, Koyck assumed that they decline geometrically as follows

$$B_k = \beta_0 \lambda^k, \quad k = 0, 1, \dots; \quad 0 < \lambda < 1 \tag{4}$$

- λ the rate of decline of decay
- (1λ) the speed of adjustment [i.e., how fast consumption expenditure adjusts to the new income level]

Koyck Distributed Lag Model III

- the value of β_k in Eq. 4 depends on β_0 and λ
- \bullet a value of λ close to 1
 - β_k declines slowly [i.e., X values in distant past will have some impact on the current value of Y]
- $\bullet\,$ a value of λ close to zero
 - the impact of X in the distant past will have little impact on the current \boldsymbol{Y}
- assuming $0 < \lambda < 1$ means that
 - each successive β coefficient is numerically smaller than each preceding β
 - as we go back into the distant past, the effect of that lag on Y becomes progressively smaller

Koyck DLM Estimation

$$Y_t = A + B_0 X_t + B_0 \lambda X_{t-1} + B_0 \lambda^2 X_{t-2} + B_0 \lambda^3 X_{t-3} + \dots + u_t$$
 (5)

- not easy to estimate an infinite number of coefficients and the adjustment coefficient λ enters highly nonlinearly
- Koyck transformation

$$Y_t = A(1 - \lambda) + \beta_0 X_t + \lambda Y_{t-1} + v_t$$
(6)

• where
$$v_t = u_t - \lambda u_{t-1}$$

э

A 19 N A 19 N

Estimation

Koyck transformation

$Y_t = A(1-\lambda) + \beta_0 X_t + \lambda Y_{t-1} + v_t$

- not that the lagged value of the dependent variable appears as a regressor [autoregressive model]
- instead of estimating an infinite number of parameters in Eq.3, we estimate only three parameters in model 6

3

16 / 29

イロト イポト イヨト イヨト

Estimation

Autoregressive Model

$$Y_t = A(1 - \lambda) + \beta_0 X_t + \lambda Y_{t-1} + v_t$$

- the impact of a unit change in X on the mean value of Y
 - the short-run impact \rightarrow the coefficient of X, β_0
 - the long-run impact $\rightarrow \beta_0/(1-\lambda)$
 - since λ lies between 0 and 1, the long-run impact will be greater than the short-run impact [it takes time to adjust to the changed income]

3

Autoregressive Model: Estimation I

$$Y_t = A(1-\lambda) + \beta_0 X_t + \lambda Y_{t-1} + v_t$$

estimating Eq. 6 poses formidable challenges

- **1** even if u_t satisfies the classical assumptions, the composite error term v_t may not [will be serially correlated]
- 2 since Y_t is stochastic, Y_{t-1} will be stochastic too
 - OLS assumes regressors to be either non-stochastic, or if stochastic, they must be distributed independently of the error term
 - Y_{t-1} and v_t are correlated \rightarrow OLS estimators are not even consistent
 - we cannot use Durbin-Watson to test for serial correlation

Autoregressive Model: Estimation II

$$Y_t = A(1-\lambda) + \beta_0 X_t + \lambda Y_{t-1} + v_t$$

- the Koyck model, although elegant, poses formidable estimation problems
- the error term v_t is autocorrelated but we can use HAC standard errors discussed in lecture 6
- the more series problem is correlation between the lagged Y_t and the error term v_t
 - find a proxy for Y_{t-1} which is highly correlated with Y_{t-1} and yet uncorrelated with v_t [an instrumental variable IV]

A E N A E N

Personal Consumption Expenditure: OLS Estimation

Dependent Variable: PCE Method: Least Squares Sample (adjusted): 1961 2009 Included Observations: 49 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-485.8849	197.5245	-2.459872	0.0177
DPI	0.432575	0.081641	5.298529	0.0000
PCE(-1)	0.559023	0.084317	6.630052	0.0000

Resquared	0.998251 Mean der	pendent var 19602.	16
Adjusted R-squared	0.998175	S.D. dependent var	6299.838
SE of regression	269.1558	Akaike info criterion	14.08773
Sum squared resid	3332462	Schwarz criterion	14.20355
Log likelihood	-342.1493	Hannan–Quinn criter.	14.13167
E-statistic	13125.09	Durbin–Watson stat	0.708175
Prob(E-statistic)	0.000000		

Personal Consumption Expenditure: HAC

Dependent Variable: PCE Method: Least Squares Sample (adjusted): 1961 2009 Included Observations: 49 after adjustments HAC standard errors & covariance (Bartlett kernel, Newey–West fixed bandwidth = 4.0000)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-485.8849	267.7614	-1.814619	0.0761
DPI	0.432575	0.098339	4.398823	0.0001
PCE(-1)	0.559023	0.102057	5.477587	0.0000
	0.008251 Mea	n dependent va	r 19602.16	

R-squared	0.998251	Mean dependent var	19002.10
Adjusted R-squared	0.998175	S.D. dependent var	6299.838
S E of regression	269,1558	Akaike info criterion	14.08773
Sum squared resid	3332462	Schwarz criterion	14.20355
Log likelihood	-342 1493	Hannan–Ouinn criter.	14.13167
Log likelihood	13125.09	Durbin–Watson stat	0.708175
Prob(E statistic)	0.000000		
PLUM FESTAL SHUL	0.00000		

Personal Consumption Expenditure: Proxy

Dependent Variable: PCE Method: Least Squares Sample (adjusted): 1961 2009 Included Observations: 49 after adjustments HAC standard errors & covariance (Bartlett kernel, Newey–West fixed bandwidth = 4.0000)

Variable	61453	Coeffic	ient	Std. Error	t-Statistic	Prob.
C		-142	5.511	372.3686	-3.828224	0.0004
		0.93	4361	0.175986	5.309287	0.0000
DPI(-1)		0.03	8213	0.177358	0.215455	0.8304
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.99 0.99 376 651 –358 670 0.00	6583 6434 1941 0013 .5553 7.481 00000	Mea S.D. Akai Schy Han Dur	n dependent va dependent var ike info criterior warz criterion nan–Quinn crit bin–Watson sta	r 19602.16 6299.838 n 14.75736 14.87318 ter. 14.80130 t 0.351356	

ARDL Model I

$$Y_{t} = A_{0} + A_{1}Y_{t-1} + A_{2}Y_{t-2} + \dots + A_{p}Y_{t-p} + \beta_{0}X_{t} + \beta_{1}X_{t-1} + \beta_{2}X_{t-2} + \dots + \beta_{q}X_{t-q} + u_{t}$$

- the lagged *Y*s constitute the autoregressive part
- the lagged Xs constitute the distributed part
- p autoregressive terms and q distributed lag terms

ARDL Model II

- advantages of an ARDL model
 - captures the dynamic effects of the lagged $Y\mathbf{s}$ and also those of the lagged $X\mathbf{s}$
 - can eliminate autocorrelation in the error term if sufficient number of lags of both variables included
 - are often used for forecasting and estimating the multiplier effects of the regressors in the model

3

イロト イポト イヨト イヨト

ARDL: Consumption Function

$$Y_t = A_0 + A_1 Y_{t-1} + \beta_0 X_t + \beta_1 X_{t-1} + u_t, \quad A_1 < 1$$
(7)

•
$$Y_t = PCE$$
 and $X = DPI$

- ARDL (1,1) model [Eq. 7] enables us to find the dynamic effects of a change in DPI on current value and future values of PCE
- \bullet the immediate effect [impact multiplier] of a unit change in DPI given by β_0
- if the unit change in DPI is sustained, the long-run multiplier is given by $\frac{\beta_0+\beta_1}{1-A_1}$

Economic S

э.

ARDL: Assumptions

- we have to make certain assumptions
 - 1 the variables X and Y are stationary
 - 2 the expected mean value of the error term u_t is zero
 - Ithe error term is serially uncorrelated
 - the X variables are exogenous at least weakly so [uncorrelated with the error term]

ARDL: OLS estimation

Dependent Variable: PCE Method: Least Squares Sample (adjusted): 1961 2009 Included Observations: 49 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-281.2019	161.0712	-1.745823	0.0877
DPI	0.824591	0.097977	8.416208	0.0000
PCE(-1)	0.805356	0.081229	9.914632	0.0000
DPI(-1)	-0.632942	0.118864	-5.324935	0.0000

R-squared	0.998927	Mean dependent var	19602.16
Adjusted R-squared	0.998855	S.D. dependent var	6299.838
S.E. of regression	213.1415	Akaike info criterion	13.63990
Sum squared resid	2044318.	Schwarz criterion	13.79433
Log likelihood	-330.1775	Hannan–Quinn criter.	13.69849
F-statistic	13962.93	Durbin-Watson stat	1.841939
Prob(F-statistic)	0.000000		

ARDL: HAC

Dependent Variable: PCE Method: Least Squares Sample (adjusted): 1961 2009 Included Observations: 49 after adjustments HAC standard errors & covariance (Bartlett kernel, Newey–West fixed bandwidth = 4.0000)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-281.2019	117.3088	-2.397107	0.0207
PCE(-1)	0.805356	0.071968	11.19044	0.0000
DPI	0.824591	0.114989	7.171026	0.0000
DPI(-1)	-0.632942	0.119717	-5.286977	0.0000

R-squared	0.998927	Mean dependent var	19602.16	
Adjusted R-squared	0.998855	S.D. dependent var	6299.838	
S.E. of regression	213.1415	Akaike info criterion	13.63990	
Sum squared resid	2044318.	Schwarz criterion	13.79433	
Log likelihood	-330.1775	Hannan–Quinn criter.	13.69849	
F-statistic	13962.93	Durbin-Watson stat	1.841939	
Prob(F-statistic)	0.000000			

Dr. Hany Abdel-Latif (2016)

ES1004ebe Lecture 8

Dynamic Regression