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Meaning Nature of Specification Errors

CLRM Assumptions

A1: model is linear in parameters
A2: regressors are fixed non-stochastic
A3: the expected value of the error term is zero E (ui |X ) = 0
A4: homoscedastic or constant variance of errors var(ui |X ) = σ2

A5: no autocorrelation, cov(ui , uj) = 0, i 6= j
A6: no multicollinearity; no perfect linear relationships among the X s
A7: no specification bias
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Meaning Nature of Specification Errors

Basic Idea I

CLRM assumes the model is ‘correctly’ specified

there is no such thing as a perfect model

an econometric model tries to capture the main features of an
economic phenomenon

taking into account the underlying economic theory, prior empirical
work, intuition, and research skills

no model can take into account every single factor that affects a
particular object of research
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Meaning Nature of Specification Errors

Basic Idea II

a ‘correctly’ specified model . . .

1 does not exclude any "core" variables
2 does not include superfluous variables
3 has the suitable functional form
4 has no measurement errors
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Meaning Nature of Specification Errors

Basic Idea III

a ‘correctly’ specified model . . .

5 takes into account outliers in the data
6 the probability distribution of the error term is well specified
7 includes non-stochastic regressors
8 no simultaneity bias
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Economic Theory Dynamic vs. Static

Equilibrium in Theory

economic theory is often stated in static or equilibrium form
e.g. the equilibrium price of a commodity (or service) is determined by
the intersection of the relevant demand and supply curves

however, equilibrium is not determined instantaneously
i.e., a process of trial and error which takes time

neglecting the dynamic [time] aspect may lead to a specification error
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Economic Theory Consumption Function

Permanent Income Hypothesis

Milton Friedman
current consumption is a function of permanent income
weighted average of quarterly income going back 16 quarters

Yt = A + B0Xt + B1Xt−1 + B2Xt−2 + · · ·+ B16Xt−16 + ut (1)

Xt income in the current period, Xt−1 income lagged one quarter
β weights attached to the income in the various quarters
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Economic Theory Consumption Function

Distributed Lag Model I

current value of Y is affected by current and lagged values of X
β0

the short-run or impact multiplier
gives the change in the mean value of Y following a unit change in X
in the same time period

if the change in X is kept at the same level thereafter, (β0 + β1) gives
the change in mean Y in the next period
the partial sums are called interim or intermediate multipliers
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Economic Theory Consumption Function

Distributed Lag Model II

after k periods, we obtain

k∑
0

βk = β0 + β1 + · · ·+ βk (2)

known as the long run or total multiplier
gives the ultimate change in mean consumption expenditure following
a (sustained) unit increase in the income
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Economic Theory Consumption Function

Distributed Lag Model: An Example

Yt = constant + 0.4Xt + 0.2Xt−1 + 0.15Xt−2 + 0.1Xt−3

the impact multiplier 0.4, the interim multiplier 0.75, total or long-run
multiplier 0.85
if income increases by $1000 in year t and assuming this increase is
maintained, consumption will increase

$400 in the first year
another $200 in the second year
another $150 in the third year
final total increase $750
presumably, the consumer will save $250
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Distributed Lag Models Estimation

OLS Estimation

we can estimate Eq. 1 by the usual OLS method
however, this is not practical

1 how do we decide how many lagged terms we use

2 using several lagged terms leads to fewer degrees of freedom to do
meaningful statistical analysis especially of the sample size is small

3 successive values of the lagged term are likely to be correlated causing
multicollinarity and imprecise estimation of the regression coefficients
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Distributed Lag Models Estimation

Koyck Distributed Lag Model I

we can express Eq. 1 in a general form as

Yt = A + B0Xt + B1Xt−1 + B2Xt−2 + · · ·+ ut (3)

infinite DLM as we have not defined the length of the lag [how far
back in time we want to travel]
note that Eq. 1 represents a finite DLM with 16 lagged terms
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Distributed Lag Models Estimation

Koyck Distributed Lag Model II

Koyck uses the geometric probability distribution to estimate the
parameters of Eq. 3

assuming that all the β coefficients in Eq. 3 have the same sign,
Koyck assumed that they decline geometrically as follows

Bk = β0λ
k , k = 0, 1, . . . ; 0 < λ < 1 (4)

λ the rate of decline of decay
(1− λ) the speed of adjustment [i.e., how fast consumption
expenditure adjusts to the new income level]
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Distributed Lag Models Estimation

Koyck Distributed Lag Model III

the value of βk in Eq. 4 depends on β0 and λ

a value of λ close to 1
βk declines slowly [i.e., X values in distant past will have some impact
on the current value of Y ]

a value of λ close to zero
the impact of X in the distant past will have little impact on the
current Y

assuming 0 < λ < 1 means that
each successive β coefficient is numerically smaller than each preceding
β
as we go back into the distant past, the effect of that lag
on Y becomes progressively smaller
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Distributed Lag Models Estimation

Koyck DLM Estimation

Yt = A + B0Xt + B0λXt−1 + B0λ
2Xt−2 + B0λ

3Xt−3 + · · ·+ ut (5)

not easy to estimate an infinite number of coefficients and the
adjustment coefficient λ enters highly nonlinearly

Koyck transformation

Yt = A(1− λ) + β0Xt + λYt−1 + vt (6)

where vt = ut − λut−1
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Distributed Lag Models Estimation

Koyck transformation

Yt = A(1− λ) + β0Xt + λYt−1 + vt

not that the lagged value of the dependent variable appears as a
regressor [autoregressive model]

instead of estimating an infinite number of parameters in Eq.3, we
estimate only three parameters in model 6
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Distributed Lag Models Estimation

Autoregressive Model

Yt = A(1− λ) + β0Xt + λYt−1 + vt

the impact of a unit change in X on the mean value of Y

the short-run impact → the coefficient of X , β0

the long-run impact → β0/(1− λ)

since λ lies between 0 and 1, the long-run impact will be greater than
the short-run impact [it takes time to adjust to the changed income]
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Distributed Lag Models Estimation

Autoregressive Model: Estimation I

Yt = A(1− λ) + β0Xt + λYt−1 + vt

estimating Eq. 6 poses formidable challenges

1 even if ut satisfies the classical assumptions, the composite error term
vt may not [will be serially correlated]

2 since Yt is stochastic, Yt−1 will be stochastic too
OLS assumes regressors to be either non-stochastic, or if stochastic,
they must be distributed independently of the error term
Yt−1 and vt are correlated → OLS estimators are not even consistent

3 we cannot use Durbin-Watson to test for serial correlation
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Distributed Lag Models Estimation

Autoregressive Model: Estimation II

Yt = A(1− λ) + β0Xt + λYt−1 + vt

the Koyck model, although elegant, poses formidable estimation
problems

the error term vt is autocorrelated but we can use HAC standard
errors discussed in lecture 6

the more series problem is correlation between the lagged Yt and the
error term vt

find a proxy for Yt−1 which is highly correlated with Yt−1
and yet uncorrelated with vt [ an instrumental variable IV]
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Autoregressive Models An Example

Personal Consumption Expenditure: OLS Estimation
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Autoregressive Models An Example

Personal Consumption Expenditure: HAC
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Autoregressive Models An Example

Personal Consumption Expenditure: Proxy
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ARDL Autoregressive Distributed Lag Model

ARDL Model I

Yt = A0 + A1Yt−1 + A2Yt−2 + · · ·+ ApYt−p

+ β0Xt + β1Xt−1 + β2Xt−2 + · · ·+ βqXt−q + ut

the lagged Y s constitute the autoregressive part
the lagged X s constitute the distributed part
p autoregressive terms and q distributed lag terms
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ARDL Autoregressive Distributed Lag Model

ARDL Model II

advantages of an ARDL model

captures the dynamic effects of the lagged Y s and also those of the
lagged X s

can eliminate autocorrelation in the error term if sufficient number of
lags of both variables included

are often used for forecasting and estimating the multiplier effects of
the regressors in the model
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ARDL Autoregressive Distributed Lag Model

ARDL: Consumption Function

Yt = A0 + A1Yt−1 + β0Xt + β1Xt−1 + ut , A1 < 1 (7)

Yt = PCE and X = DPI
ARDL (1,1) model [Eq. 7] enables us to find the dynamic effects of a
change in DPI on current value and future values of PCE

the immediate effect [impact multiplier] of a unit change in DPI given
by β0

if the unit change in DPI is sustained, the long-run multiplier is given
by β0+β1

1−A1
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ARDL Autoregressive Distributed Lag Model

ARDL: Assumptions

we have to make certain assumptions

1 the variables X and Y are stationary

2 the expected mean value of the error term ut is zero

3 the error term is serially uncorrelated

4 the X variables are exogenous - at least weakly so [uncorrelated with
the error term]
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ARDL Autoregressive Distributed Lag Model

ARDL: OLS estimation
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ARDL Autoregressive Distributed Lag Model

ARDL: HAC
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Questions & Answers
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