ES1004 Econometrics by Example

Lecture 7: Model Specification Errors

Dr. Hany Abdel-Latif

Swansea University, UK

Gujarati textbook, second edition

1 / 37

23rd July 2016

Dr. Hany Abdel-Latif (2016)

ES1004ebe Lecture 7

Specification Errors

CLRM Assumptions

- A₁: model is linear in parameters
- A₂: regressors are fixed non-stochastic
- **A**₃: the expected value of the error term is zero $E(u_i|X) = 0$
- **A**₄: homoscedastic or constant variance of errors $var(u_i|X) = \sigma^2$
- **A**₅: no autocorrelation, $cov(u_i, u_j) = 0, i \neq j$
- A_6 : no multicollinearity; no perfect linear relationships among the Xs A_7 : no specification bias

Basic Idea I

- CLRM assumes the model is 'correctly' specified
 - there is no such thing as a perfect model
- an econometric model tries to capture the main features of an economic phenomenon
 - taking into account the underlying economic theory, prior empirical work, intuition, and research skills
- no model can take into account every single factor that affects a particular object of research

Basic Idea II

- a 'correctly' specified model ...
 - does not exclude any "core" variables
 - 2 does not include superfluous variables
 - I has the suitable functional form
 - 4 has no measurement errors

3

- 4 周 ト - 4 日 ト - 4 日 ト

Basic Idea III

- a 'correctly' specified model ...
 - takes into account outliers in the data
 - the probability distribution of the error term is well specified
 - includes non-stochastic regressors
 - o simultaneity bias

э

A B A A B A

Example: Wage Determination

- a model of hourly wage determination
- data table1.1
- CPS: current population survey 1995 data on 1289 workers

4 E N 4 E N

Determinants of hourly wage rate

Dependent Variable: WAGE Method: Least Squares Date: 07/23/16 Time: 12:18 Sample: 1 1289 Included observations: 1289

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C FEMALE NONWHITE UNION EDUCATION	-7.183338 -3.074875 -1.565313 1.095976 1.370301	1.015788 0.364616 0.509188 0.506078 0.065904	-7.071691 -8.433184 -3.074139 2.165626 20.79231	0.0000 0.0000 0.0022 0.0305 0.0000
EXPER R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic	0.323339 0.320702 6.508137 54342.54 -4240.370 122.6149	0.016048 Mean depende S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watsc	10.38205 ent var nt var terion ion n criter. n stat	12.36585 7.896350 6.588627 6.612653 6.597646 1.897513

3

(日) (同) (三) (三)

Determinants of hourly wage rate

Dependent Variable: WAGE Method: Least Squares Date: 07/23/16 Time: 12:20 Sample: 1 1289 Included observations: 1289

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-8.419035	1.035710	-8.128758	0.0000
FEMALE	-3.009360	0.361432	-8.326210	0.0000
NONWHITE	-1.536077	0.504448	-3.045066	0.0024
UNION	1.026979	0.501521	2.047728	0.0408
EDUCATION	1.323745	0.065937	20.07597	0.0000
EXPER	0.424463	0.053580	7.922075	0.0000
EXPER^2	-0.006183	0.001227	-5.039494	0.0000
R-squared	0.336483	Mean depend	lent var	12.36585
Adjusted R-squared	0.333378	S.D. depende	ent var	7.896350
S.E. of regression	6.447128	Akaike info cr	iterion	6.570563
Sum squared resid	53286.93	Schwarz crite	rion	6.598593
Log likelihood	-4227.728	Hannan-Quir	in criter.	6.581084
F-statistic	108.3548	Durbin-Watso	on stat	1.901169
Prob(F-statistic)	0.000000			

3

8 / 37

Dr. Hany Abdel-Latif (2016)

(日) (同) (三) (三)

Determinants of hourly wage rate

Dependent Variable: WAGE Method: Least Squares Date: 07/23/16 Time: 12:21 Sample: 1 1289 Included observations: 1289

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-9.200668	1.072115	-8.581791	0.0000
FEMALE	-1.433980	0.680797	-2.106326	0.0354
NONWHITE	-1.481891	0.503577	-2.942731	0.0033
UNION	0.949027	0.501081	1.893958	0.0585
EDUCATION	1.318365	0.065801	20.03554	0.0000
EXPER	0.471974	0.056212	8.396344	0.0000
EXPER^2	-0.006274	0.001224	-5.124559	0.0000
EXPER*FEMALE	-0.084151	0.030848	-2.727939	0.0065
R-squared	0.340315	Mean depend	lent var	12.36585
Adjusted R-squared	0.336711	S.D. depende	ent var	7.896350
S.E. of regression	6.430992	Akaike info cr	iterion	6.566322
Sum squared resid	52979.16	Schwarz crite	rion	6.598357
Log likelihood	-4223.994	Hannan-Quir	in criter.	6.578346
F-statistic	94.40528	Durbin-Watso	on stat	1.892702
Prob(F-statistic)	0.000000			_
Dr. Hany Abdel-Latif (201	.6)	ES1004ebe Lect	ure 7	Specifi

э

9 / 37

Ramsey's RESET test I

- from the 'incorrectly' estimated model, obtain the estimated, or fitted, values of the dependent variable
- eestimate the original model including the fitted values of the dependent variable as additional regressors
- the initial model is the restricted model and the model is step 2 is the unrestricted model

Ramsey's RESET test II

- under the null hypothesis that the restricted (i.e., the original) model is correct, we can use the F test
- if the F test in step 4 is statistically significant, we can reject the null hypothesis.
 - the restricted model is not appropriate in the present situation

An example: Restricted model

Dependent Variable: WAGE Method: Least Squares Date: 07/23/16 Time: 12:18 Sample: 1 1289 Included observations: 1289

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-7.183338	1.015788	-7.071691	0.0000
FEMALE	-3.074875	0.364616	-8.433184	0.0000
	-1.565313	0.509188	-3.074139	0.0022
	1.095976	0.506078	2.165626	0.0305
EDUCATION	1.370301	0.065904	20.79231	0.0000
EXPER	0.166607	0.016048	10.38205	
R-squared	0.323339	Mean depend	lent var	12.36585
Adjusted R-squared	0.320702	S.D. depende	ent var	7.896350
S.E. of regression	6.508137	Akaike info cri	iterion	6.588627
Sum squared resid Log likelihood F-statistic Prob(F-statistic)	54342.54 -4240.370 122.6149 0.000000	Schwarz critei Hannan-Quin Durbin-Watsc	rion n criter. on stat	6.612653 6.597646 1.897513

3

View	Proc	Object	Print	Name	Freeze	Estimate	Forecast	Stats	Resids		
	Repre	sentation	s								-
	Estima	ation Outp	out								
	Actual	l,Fitted,Ri	esidual		•						
	ARMA	Structure	ə								
	Gradie	ents and D)erivati	ves	•	: Std. I	Error	t-Stati	stic	Prob.	
	Coyar	iance Mat	rix			1.072	2115 -	8.581	791	0.0000	
	⊆oeffi	icient Diag	nostic	;	Þ	0.680 0.503)797 - 3577 -	2.106 2.942	326 731	0.0354 0.0033	
	<u>R</u> esidu	ual Diagno	stics		•	0.501	LO81 5901	1.893 20.03	958 554	0.0585 n nnnn	_
	Stabili	ty Diagno	stics		Þ	Chow) <u>B</u> reakpoir	nt Test.			
	Label					Quan	idt-Andrew	vs Brea	kpoint T	est	
R-s	quare	ed.		0	340315	Multip	ole Breakpo	oint Tes	st		
Adj	usted	R-squar	ed	0.	336711	Chow	/ Eorecast	Test			
S.E.	, of rej	gressior ared res) id	6. 51	430992 2070 16	Rams	ey RESET	Test			
Log	i likeli	hood	ru -	-42	223.994	Recu	rsive Estim	iates (C	DLS only)	
F-S Pro	tatistic h(E-st	: tatistic)		9. 0	4.40528 იიიიი	Lever	age Plots.				
						Influe	ence Statis	tics			ľ

э

Dr. Hany Abdel-Latif (2016)

Specification Errors

イロト イヨト イヨト イヨト

Dependent Variable: WAGE Method: Least Squares Date: 07/23/16 Time: 12:40 Sample: 1 1289 Included observations: 1289

Variable	$\Theta \cap O X$	RESET S	Statistic	Prob.
C FEMALE NONWHITE UNION EDUCATION EXPER	Number of fit	ted terms: 2	071691 433184 074139 165626 0.79231 0.38205	0.0000 0.0000 0.0022 0.0305 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.3233339 0.320702 6.508137 54342.54 -4240.370 122.6149 0.000000	Mean depender S.D. dependent Akaike info crite Schwarz criterio Hannan-Quinn Durbin-Watson	nt var var rion n criter. stat	12.36585 7.896350 6.588627 6.612653 6.597646 1.897513

3

(日) (同) (三) (三)

Ramsey RESET Test Equation: UNTITLED Specification: WAGE C FEMALE NONWHITE UNION EDUCATION EXPER Omitted Variables: Powers of fitted values from 2 to 3

F-statistic Likelihood ratio	Value 20.12362 39.87540	df (2, 1281) 2	Probability 0.0000 0.0000
F-test summary:			
	Sum of Sq.	df	Mean Squares
Test SSR	1655.358	2	827.6790
Restricted SSR	54342.54	1283	42.35584
Unrestricted SSR	52687.19	1281	41.12973
LR test summary:			
	Value	df	_
Restricted LogL	-4240.370	1283	
Unrestricted LogL	-4220.433	1281	

3

15 / 37

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Unrestricted Test Equation: Dependent Variable: WAGE Method: Least Squares Date: 07/23/16 Time: 12:41 Sample: 1 1289 Included observations: 1289

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	4.412981	2.453617	1.798561	0.0723
FEMALE	-0.059017	0.797535	-0.073999	0.9410
NONWHITE	-0.195466	0.631646	-0.309454	0.7570
UNION	0.124108	0.564161	0.219987	0.8259
EDUCATION	0.080124	0.302395	0.264966	0.7911
EXPER	0.000969	0.042470	0.022809	0.9818
FITTED^2	0.044738	0.020767	2.154294	0.0314
FITTED^3	-0.000311	0.000601	-0.517110	0.6052
R-squared	0.343951	Mean depen	ident var	12.36585
Adjusted R-squared	0.340366	S.D. depend	lent var	7.896350
S.E. of regression	6.413247	Akaike info c	riterion	6.560795
Sum squared resid	52687.19	Schwarz criti	erion	6.592830
Log likelihood	-4220.433	Hannan-Qui	nn criter.	6.572820
F-statistic Prob(F-statistic)	95.94255 0.000000	Durbin-Wate	on stat	1.894263

3

Dr. Hany Abdel-Latif (2016)

Specification Errors

(B)

Ramsey's RESET test: Drawbacks

- although simple to apply, it has two drawbacks
 - if the model found incorrectly specified, the test does not suggest any specific alternative
 - 2 does not offer guidance about the number of powered termed

The Lagrange Multiplier LM test

- from the original model, obtain the estimated residuals, e_i
- if model is correct, e_i should not be related to the regressors omitted from that model
- regress e_i on the regressors in the original model and the omitted variables from the original model [this is an auxiliary regression]

The Lagrange Multiplier LM test

- if large sample, then $n * R^2$ [obtained from the auxiliary regression]
 - follows the chi-square distribution
 - with *df* equal to the number of regressors omitted from the original regression
- we reject the original [restricted] regression if
 - the computed value exceeds the critical value at the chosen level of significance
 - its p value is sufficiently low
 - This is, the original model was misspecified

LM test: An Example

Dependent Variable: WAGE Method: Least Squares Date: 07/23/16 Time: 12:18 Sample: 1 1289 Included observations: 1289

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-7.183338	1.015788	-7.071691	0.0000
FEMALE	-3.074875	0.364616	-8.433184	0.0000
NONWHITE	-1.565313	0.509188	-3.074139	0.0022
UNION	1.095976	0.506078	2.165626	0.0305
EDUCATION	1.370301	0.065904	20.79231	0.0000
EXPER	0.166607	0.016048	10.38205	0.0000
R-squared	0.323339	Mean depend	lent var	12.36585
Adjusted R-squared	0.320702	S.D. depende	ent var	7.896350
S.E. of regression	6.508137	Akaike info cri	iterion	6.588627
Sum squared resid	54342.54	Schwarz criter	rion	6.612653
Log likelihood	-4240.370	Hannan-Quin	n criter.	6.597646
F-statistic	122.6149	Durbin-Watso	on stat	1.897513
Prob(F-statistic)	0.000000			

3

LM test: An Example

Dependent Variable: E1 Method: Least Squares Date: 07/23/16 Time: 13:09 Sample: 1 1289 Included observations: 1289

Variable	Coefficient	Std. Error	t-Statistic	Prob.
с	-2.017330	1.072115	-1.881636	0.0601
FEMALE	1.640895	0.680797	2.410257	0.0161
NONWHITE	0.083422	0.503577	0.165659	0.8685
UNION	-0.146949	0.501081	-0.293264	0.7694
EDUCATION	-0.051936	0.065801	-0.789287	0.4301
EXPER	0.305367	0.056212	5.432437	0.0000
EXPER^2	-0.006274	0.001224	-5.124559	0.0000
EXPER*FEMALE	-0.084151	0.030848	-2.727939	0.0065
R-squared	0.025089	Mean depend	dentvar	1.15E-15
Adjusted R-squared	0.019761	S.D. depende	ent var	6.495492
S.E. of regression	6.430992	Akaike info cr	riterion	6.566322
Sum squared resid	52979.16	Schwarz crite	rion	6.598357
Log likelihood	-4223.994	Hannan-Quir	nn criter.	6.578346
F-statistic	4.709394	Durbin-Wats	on stat	1.892702
Prob(F-statistic)	0.000031			
Dr. Hany Abdel-Latif (201	16)	ES1004ebe Lect	ure 7	Specific

3

21 / 37

LM test: An Example

LM test

$$nR^2 = (1289)(0.0251) \approx 32.35 \sim \chi^2_{2,0.05}$$

- the critical value for $\chi^2_{2.05} = 5.99147$
- the computed value is greater than the critical value
- reject the original model; i.e., it is misspecified

э

A Chi-Square Table: Values of χ^2_{α}

df	$\chi^{2}_{0.10}$	$\chi^{2}_{0.05}$	
1	2.70554	3.84146	
2	4.60517	5.99147	
3	6.25139	7.81473	
4	7.77944	9.48773	
5	9.23635	11.0705	
6	10.6446	12.5916	
7	12.0170	14.0671	
8	13.3616	15.5073	
9	14.6837	16.9190	
10	15.9871	18.3070	

э

(日) (同) (三) (三)

Basic Idea

- sometimes researchers add variables hoping that the R^2 value will increase
 - a mistaken belief that the higher the R^2 the better the model
- if variables are not economically meaningful and relevant: overfitting a model

An Example: Wage Determination

Dependent Variable: WAGE Method: Least Squares Date: 07/23/16 Time: 12:18 Sample: 1 1289 Included observations: 1289

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-7.183338	1.015788	-7.071691	0.0000
FEMALE	-3.074875	0.364616	-8.433184	0.0000
NONWHITE	-1.565313	0.509188	-3.074139	0.0022
UNION	1.095976	0.506078	2.165626	0.0305
EDUCATION	1.370301	0.065904	20.79231	0.0000
EXPER	0.166607	0.016048	10.38205	0.0000
R-squared	0.323339	Mean depend	lent var	12.36585
Adjusted R-squared	0.320702	S.D. depende	ent var	7.896350
S.E. of regression	6.508137	Akaike info cr	iterion	6.588627
Sum squared resid	54342.54	Schwarz crite	rion	6.612653
Log likelihood	-4240.370	Hannan-Quin	in criter.	6.597646
F-statistic	122.6149	Durbin-Watso	on stat	1.897513
Prob(F-statistic)	0.000000			

Dr. Hany Abdel-Latif (2016)

✓ □ ▷ ✓ ⓓ ▷ ✓ ≧ ▷ ✓ ≧ ▷
Specification Errors

25 / 37

3

An Example: Wage Determination

• now try adding age of the worker to the model

・ロト ・ 一下 ・ ・ 三 ト ・ 三 ト

э

An Example: Wage Determination

Dependent Variable: EXPER Method: Least Squares Date: 07/23/16 Time: 14:06 Sample: 1 1289 Included observations: 1289

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AGE	-18.56877 0.984808	0.269951 0.006811	-68.78564 144.5984	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.942016 0.941971 2.809491 10158.60 -3159.552 20908.71 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		18.78976 11.66284 4.905434 4.913443 4.908440 1.915714

Dr. Hany Abdel-Latif (2016)

The Economic Society

3

Example: linear v log-linear

Wage Determination: Linear

Dependent Variable: WAGE Method: Least Squares Date: 07/23/16 Time: 12:21 Sample: 1 1289 Included observations: 1289

Variable	Coefficient	Std. Error	t-Statistic	Prob.
с	-9.200668	1.072115	-8.581791	0.0000
FEMALE	-1.433980	0.680797	-2.106326	0.0354
NONWHITE	-1.481891	0.503577	-2.942731	0.0033
UNION	0.949027	0.501081	1.893958	0.0585
EDUCATION	1.318365	0.065801	20.03554	0.0000
EXPER	0.471974	0.056212	8.396344	0.0000
EXPER^2	-0.006274	0.001224	-5.124559	0.0000
EXPER*FEMALE	-0.084151	0.030848	-2.727939	0.0065
R-squared	0.340315	Mean depend	dent var	12.36585
Adjusted R-squared	0.336711	S.D. depende	ent var	7.896350
S.E. of regression	6.430992	Akaike info cr	iterion	6.566322
Sum squared resid	52979.16	Schwarz crite	rion	6.598357
Log likelihood	-4223.994	Hannan-Quir	nn criter.	6.578346
F-statistic	94.40528	Durbin-Wats	on stat	1.892702
Prob(F-statistic)	0.000000			
Dr. Hany Abdel-Latif (201	16)	ES1004ebe Lect	ure 7	Specific

э

Wage Determination: Log-Linear

Dependent Variable: LNWAGE Method: Least Squares Date: 07/23/16 Time: 14:21 Sample: 1 1289 Included observations: 1289

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C FEMALE NONWHITE UNION EDUCATION EXPER EXPER^2 EXPER*FEMALE	0.732446 -0.148060 -0.127302 0.168485 0.094792 0.041946 -0.000637 -0.005043	0.077613 0.049285 0.036455 0.036275 0.004764 0.004069 8.86E-05 0.002233	9.437131 -3.004179 -3.492000 4.644705 19.89963 10.30778 -7.187309 -2.258065	0.0000 0.0027 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0241
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.373017 0.369591 0.465556 277.6474 -839.5302 108.8741 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		2.342416 U.585355 1.315020 1.347055 1.327044 1.926178

29 / 37

Dr. Hany Abdel-Latif (2016)

Specification Errors

3. 3

- genr wageaverage = @mean(wage)
- genr wagenew = wage/wageaverage
- Irun both regressions [linear & log-linear] using the new variable and obtain the RSS [residual sum of squares] for both models

Dependent Variable: WAGE_NEW Method: Least Squares Date: 07/23/16 Time: 14:34 Sample: 1 1289 Included observations: 1289

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C FEMALE NONWHITE UNION EDUCATION EXPER EXPER^2 EXPER*FEMALE	-0.744039 -0.115963 -0.119837 0.076746 0.106613 0.038168 -0.000507 -0.006805	0.086700 0.055055 0.040723 0.040521 0.005321 0.004546 9.90E-05 0.002495	-8.581791 -2.106326 -2.942731 1.893958 20.03554 8.396344 -5.124559 -2.727939	0.0000 0.0354 0.0585 0.0000 0.0000 0.0000 0.0000 0.0005
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.340315 0.336711 0.520061 346.4632 -982.2384 94.40528 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		1.000000 0.638561 1.536444 1.568479 1.548469 1.892702

Dr. Hany Abdel-Latif (2016)

Specification Errors

3. 3

The Economic Society

Dependent Variable: LOG(WAGE_NEW) Method: Least Squares Date: 07/23/16 Time: 14:34 Sample: 1 1289 Included observations: 1289

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C FEMALE NONWHITE UNION EDUCATION EXPER EXPER^2 EXPER*FEMALE	-1.782493 -0.148060 -0.127302 0.168485 0.094792 0.041946 -0.000637 -0.005043	0.077613 0.049285 0.036455 0.036275 0.004764 0.004069 8.86E-05 0.002233	-22.96635 -3.004179 -3.492000 4.644705 19.89963 10.30778 -7.187309 -2.258065	0.0000 0.0027 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0241
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.373017 0.369591 0.465556 277.6474 -839.5302 108.8741 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		-0.172523 0.586356 1.315020 1.347055 1.327044 1.926178

The Economic Society

∃ nar

32 / 37

Dr. Hany Abdel-Latif (2016)

Specification Errors

I I I I

• compute [larger RSS in the numerator]

$$\lambda = \frac{n}{2} ln(\frac{RSS_1}{RSS_2}) \sim \chi^2_{1,\alpha}$$

$$=\frac{1289}{2}\ln(\frac{346.4632}{277.6474})\approx 365.11$$

- the computed value is greater than the critical value [significant]
- then the model with the lower RSS value is better
- in this example, log-lin model is superior to the linear model

Errors of Measurement in the Regressand

- the OLS estimators are still unbiased
- the variances and standard errors of OLS estimators are still unbiased
- but the estimated variances, and ipso facto the standard errors, are larger than in the absence of such errors
- in short, errors of measurement in the regressand do not pose a very serious threat to OLS estimation

Errors of Measurement in the Regressor I

- OLS estimators are biased as well as inconsistent
- errors in a single regressor can lead to biased and inconsistent estimates of the coefficients of the other regressors in the model
- it is not easy to establish the size and direction of bias in the estimated coefficients
- suggested to use instrumental or proxy variables for variables suspected of having measurement errors

Errors of Measurement in the Regressor II

- the proxy variables must satisfy two requirements
 - Initial provide the state of the state of
 - e uncorrelated with the usual equation error as well as the measurement error
- more about instrumental variables in chapter 19
- be very careful in collecting the data and make sure that some obvious errors are eliminated

Dr. Hany Abdel-Latif (2016)

ES1004ebe Lecture 7

Specification Errors