### ES1004 Econometrics by Example

#### Lecture 3: Qualitative Explanatory Variables

Dr. Hany Abdel-Latif

Swansea University, UK

Gujarati textbook, second edition

14th May 2016



#### Basic Idea I

- sometimes cannot obtain set of numerical values for all variables to use in a model
- because some variables cannot be quantified easily
- examples
  - gender may play a role in determining salary levels
  - different ethnic groups may follow different consumption patterns
  - educational levels can affect earnings from employment



#### Basic Idea II

- qualitative variables as regressors
  - to include in a regression we define dummy variables
  - nominal scale variables which have no particular numerical values
  - usually in cross-sectional models, but can appear in time series as well
- more examples [in times series]
  - changes in political regime may affect production
  - war can impact on economic activities
  - certain days in week or certain months in year can have different effects on the fluctuation of stock prices
  - seasonal effects often observed in demand of various products



#### Basic Idea III

- note that dummy variables are also called
  - indicator variables
  - categorical variables, and
  - qualitative variables





## Including Dummy Variables I

• consider following cross-sectional model

$$wage_i = \beta_1 + \beta_2 exper_i + u_i$$

- this model assumes that the constant  $\beta_1$  is the same for all the observations in our dataset
- what if we have two different subgroups
  - male and female, for example





### Including Dummy Variables II

 we convert such qualitative information into a quantitative variable by creating a dummy variable

$$D = \begin{cases} 1 & \text{if female} \\ 0 & \text{if male} \end{cases}$$

- note that
  - i the choice of which of the two different outcomes is to be assigned the value of 1 does not alter the results
  - ii the 0 classification is often referred to as the benchmark, or control category



# Including Dummy Variables III

$$wage_i = \beta_1 + \beta_2 exper_i + \beta_3 D_i + u_i$$

- now we have two cases
  - when D = 0 (male)

$$Y_i = \beta_1 + \beta_2 X_i + u_i$$

② when D = 1 (female)

$$Y_i = (\beta_1 + \beta_3) + \beta_2 X_i + u_i$$

• two groups [male & female] but included only one dummy  $D_i$ 





### Dummy Variable Trap

- if an intercept is included and we have a qualitative variable with m categories, then introduce only (m-1) dummy variables
  - consider a self-reported health as a choice among excellent, good, and poor
  - we can have at most two dummy variables to represent three categories
- ullet not following this rule o dummy variable trap o perfect collinearity





## Reference Category

- the subgroup that gets value of 0 is called the
  - reference category,
  - benchmark, or
  - comparison category
- all comparisons are made in relation to the reference category
  - if there are several dummy variables, you must keep track of the reference category





## Modelling Wages: Data

- we want to study what factors determine hourly wage (in dollars)
- table 1.1 data of 1289 individuals interviewed in March 1995
  - wage hourly wage in dollars [dependent variable]
  - female 🕼 gender, coded 1 for female, 0 for male
  - nonwhite race, coded 1 for nonwhite, 0 for white workers
  - union is union status, coded 1 if in a union job, 0 otherwise
  - education education in years
  - exper 🕼 potential work experience in years





### Modelling Wages: Estimation

Dependent Variable: WAGE Method: Least Squares Date: 05/14/16 Time: 09:39

Sample: 1 1289

| Variable                                | Coefficient | Std. Error | t-Statistic | Prob.  |
|-----------------------------------------|-------------|------------|-------------|--------|
| C FEMALE NONWHITE UNION EDUCATION EXPER | -7.183338   | 1.015788   | -7.071691   | 0.0000 |
|                                         | -3.074875   | 0.364616   | -8.433184   | 0.0000 |
|                                         | -1.565313   | 0.509188   | -3.074139   | 0.0022 |
|                                         | 1.095976    | 0.506078   | 2.165626    | 0.0305 |
|                                         | 1.370301    | 0.065904   | 20.79231    | 0.0000 |
|                                         | 0.166607    | 0.016048   | 10.38205    | 0.0000 |





# Refining the Wage Function I

- we found that the average salary of a
  - female worker is lower than that of her male counterpart
  - nonwhite worker is lower than that of his white counterpart
- what about a female nonwhite?
- we need to include an interactive dummy





# Refining the Wage Function I

Dependent Variable: WAGE Method: Least Squares Date: 05/14/16 Time: 10:19 Sample: 1 1289

| Variable                                                | Coefficient | Std. Error | t-Statistic | Prob.  |
|---------------------------------------------------------|-------------|------------|-------------|--------|
| C FEMALE NONWHITE UNION EDUCATION EXPER FEMALE*NONWHITE | -7.088725   | 1.019482   | -6.953264   | 0.0000 |
|                                                         | -3.240148   | 0.395328   | -8.196106   | 0.0000 |
|                                                         | -2.158525   | 0.748426   | -2.884087   | 0.0040 |
|                                                         | 1.115044    | 0.506352   | 2.202113    | 0.0278 |
|                                                         | 1.370113    | 0.065900   | 20.79076    | 0.0000 |
|                                                         | 0.165856    | 0.016061   | 10.32631    | 0.0000 |
|                                                         | 1.095371    | 1.012897   | 1.081424    | 0.2797 |





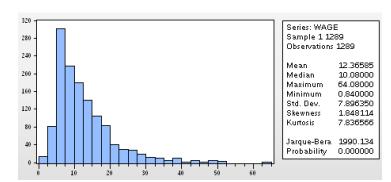
# Refining the Wage Function II

- we implicitly assumed that slope coefficients of quantitative regressors remain the same between
  - male and female
  - white and nonwhite
- however, we do not need to we can include differential slope dummies



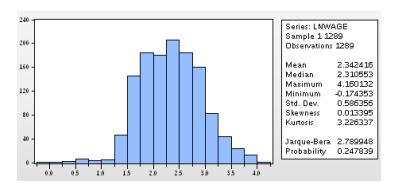


# Refining the Wage Function II


Dependent Variable: WAGE Method: Least Squares Date: 05/14/16 Time: 10:23 Sample: 1 1289

| Variable         | Coefficient | Std. Error | t-Statistic | Prob.  |
|------------------|-------------|------------|-------------|--------|
| C                | -11.09129   | 1.421846   | -7.800623   | 0.0000 |
| FEMALE           | 3.174158    | 1.966465   | 1.614144    | 0.1067 |
| NONWHITE         | 2.909129    | 2.780066   | 1.046424    | 0.2956 |
| UNION            | 4.454212    | 2.973494   | 1.497972    | 0.1344 |
| EDUCATION        | 1.587125    | 0.093819   | 16.91682    | 0.0000 |
| EXPER            | 0.220912    | 0.025107   | 8.798919    | 0.0000 |
| FEMALE*EDUCATION | -0.336888   | 0.131993   | -2.552314   | 0.0108 |
| FEMALE*EXPER     | -0.096125   | 0.031813   | -3.021530   | 0.0026 |
| NONWHITE*EDUCATI | -0.321855   | 0.195348   | -1.647595   | 0.0997 |
| NONWHITE*EXPER   | -0.022041   | 0.044376   | -0.496700   | 0.6195 |
| UNION*EDUCATION  | -0.198323   | 0.191373   | -1.036318   | 0.3003 |
| <u> </u>         | -0.033454   | 0.046054   | -0.726410   | 0.4677 |






#### Functional Form





#### Functional Form





#### Functional Form

Dependent Variable: LNWAGE

Method: Least Squares Date: 05/14/16 Time: 10:34

Sample: 1 1289

| Variable                                | Coefficient                                                            | Std. Error                                                           | t-Statistic                                                            | Prob.                                          |
|-----------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------|
| C FEMALE NONWHITE UNION EDUCATION EXPER | 0.905504<br>-0.249154<br>-0.133535<br>0.180204<br>0.099870<br>0.012760 | 0.074175<br>0.026625<br>0.037182<br>0.036955<br>0.004812<br>0.001172 | 12.20768<br>-9.357891<br>-3.591399<br>4.876316<br>20.75244<br>10.88907 | 0.0000<br>0.0000<br>0.0003<br>0.0000<br>0.0000 |







