ES1004 Econometrics by Example

Lecture 2: Functional Forms in Regression

Dr. Hany Abdel-Latif

Swansea University, UK

Gujarati textbook, second edition
May 7th 2016
(1) Linear Models
(2) Log Models

(3) Reciprocal Models

(4) Polynomial Models

 ய్工ECONOMIC İSOCIETY
Linearity I

- an equation is linear in the variables if plotting the function in terms of X and Y generates a straight line

$$
\begin{array}{ll}
Y=\beta_{0}+\beta_{1} X+u & \text { linear in variables } \\
Y=\beta_{0}+\beta_{1} X^{2}+u & \text { not linear in variables }
\end{array}
$$

Linearity II

- an equation is linear in the coefficients only if the coefficients appear in their simplest form i.e.,
- not raised to any powers (other than one)
- not multiplied or divided by other coefficients
- do not include some sort of function (like logs or exponents)

$$
Y=\beta_{0}+\beta_{1} X+u \quad \text { linear in coefficients }
$$

$Y=\beta_{0}+\beta_{1} X^{2}+u \quad$ linear in coefficients
$Y=\beta_{0}+X^{\beta_{1}} \quad$ not linear in coefficients

OLS Estimation

- OLS method is restricted to models that are linear in the parameters

$$
\begin{array}{ll}
Y=\beta_{0}+\beta_{1} X^{2}+u & \text { can be estimated by OLS } \\
Y=\beta_{0}+X^{\beta_{1}} & \text { cannot be estimated by OLS }
\end{array}
$$

- models that are nonlinear in parameters can be estimated using nonlinear least squares
- an iterative procedure which searches for the parameter value(s) which minimise the RSS of the model

(1) Linear Models

(2) Log Models

(3) Reciprocal Models

(4) Polynomial Models

 Ш्干 $E C O N O M I C$ İSOCIETY
Cobb-Douglas Production Function I

$$
\begin{equation*}
Q_{i}=\beta_{1} L_{i}^{\beta_{2}} K_{i}^{\beta_{3}} \tag{1}
\end{equation*}
$$

- can be transformed into a linear model by taking natural logs of both sides

$$
\begin{equation*}
\ln Q_{i}=\ln \beta_{1}+\beta_{2} \ln L_{i}+\beta_{3} \ln K_{i} \tag{2}
\end{equation*}
$$

- adding the error term u_{i}, we obtain the following LRM

$$
\begin{equation*}
\ln Q_{i}=\ln \beta_{1}+\beta_{2} \ln L_{i}+\beta_{3} \ln K_{i}+u_{i} \tag{3}
\end{equation*}
$$

- eq. 3 is known as double-log, log-log or constant elasticity model
- because both the regressand and regressors are in the log from

Cobb-Douglas Production Function II

$$
\ln Q_{i}=\ln \beta_{1}+\beta_{2} \ln L_{i}+\beta_{3} \ln K_{i}+u_{i}
$$

- the slope coefficients can be interpreted as partial elasticities
- holding other variables constant
- returns to scale of CD function
- if $\left(\beta_{2}+\beta_{3}\right)=1 \rightarrow$ constant returns to scale
- if $\left(\beta_{2}+\beta_{3}\right)>1 \rightarrow$ increasing returns to scale
- if $\left(\beta_{2}+\beta_{3}\right)<1 \rightarrow$ decreasing returns to scale

Example: CD function for USA

- table 2.1 cross section data for 51 states for 2005
- output [value added, thousands of dollars]
- labor [worker hours, in thousands]
- capital [capital expenditure, in thousands of dollars]

Example: Estimate in EViews

Command

Is Inoutput c Inlabor Incapital

E Command
 E Capture

Example: EViews Output

View	Proc	Object	Print	Name	Freeze	Estimate	Forecast	Stats	Resid			
Dependent Variable: LNOUTPUT Wethod: Least Squares Date: 05/06/16 Time: $16: 21$ Sample: 151 Included obsenvations: 51												
Variable				Coefficient		Std. Error		t-Statistic		Prob.		
C LNLABOR LNCAPITAL				$\begin{array}{r} 3.887600 \\ 0.468332 \\ \hline 0.521279 \\ \hline \end{array}$		$\begin{aligned} & 0.396228 \\ & 0.098926 \\ & 0.096887 \end{aligned}$		$\begin{aligned} & 9.811519 \\ & 4.734170 \\ & 5.380281 \end{aligned}$		0.0000		
				0.0000								
				0.0000								
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)						0.964175 Wean dependent var						16.94139
				0.962683	S.D. dependent war				1.380870			
				0.266752	Akaike info criterion				0.252027			
				3.415517	Schwar criterion				0.365664			
				3.428697 Hannan-Quinn criter. 645.9317 Durbin-watson stat 0.000000						0.295451		
					1.946387							

Example: Inference \& Interpretation

- hypothesis testing \& goodness of fit
- all regression coefficients (i.e., elasticities) are individually statistically highly significant (quite low p values)
- according to F - statistic collectively both factors inputs [labour and capital] are statistically significant
- quite hight R^{2} [unusual for cross-section data!]
- if we increase labour input by 1%, on average, output goes up by about 0.47% [holding the capital input constant]
- if we increase the capital input by 1%, on average, the output increases by about 0.52% [holding the labour input constant]
- $\beta_{2}+\beta_{3}=0.9896 \rightarrow$ constant returns to scale in 2005

Growth Models I

- the rate of growth of real gdp

$$
\begin{equation*}
R G D P_{t}=R G D P_{1960}(1+r)^{t} \tag{4}
\end{equation*}
$$

- can be transformed into a linear model by taking natural logs of both sides

$$
\begin{equation*}
\ln R G D P_{t}=\ln R G D P_{1960}+t \ln (1+r) \tag{5}
\end{equation*}
$$

- let $\beta_{1}=R G D P_{1960}, \beta_{2}=\ln (1+r)$, this can be written as

Growth Models II

- this can be written as

$$
\begin{equation*}
\ln R G D P_{t}=\beta_{1}+\beta_{2} t \tag{6}
\end{equation*}
$$

- adding the error term u_{t}, we obtain

$$
\begin{equation*}
\ln R G D P_{t}=\beta_{1}+\beta_{2} t+u_{t} \tag{7}
\end{equation*}
$$

- note that the regressor is "time", which takes values of $1,2, \ldots, T$
- called a semilog or log-lin model

Growth Models III

$$
\begin{gather*}
\ln R G D P_{t}=\beta_{1}+\beta_{2} t+u_{t} \\
\beta_{2}=\frac{\text { relative change in regressand }}{\text { absolute change in regressor }} \tag{8}
\end{gather*}
$$

- β_{2}
- multiply it by 100 to compute the percentage change, or the growth rate
- known as the semi-elasticity of the regressand with respect to the regressor [or an instantaneous growth rate]

Example: Growth Rate Real GDP

- table 2.5 USA real gdp [adjusted for inflation] 1960-2007

Example: EViews Output

View	Proc	Object	Print	Name	Freeze	Estimate	Forecast	Stats	Resid		
Dependent Variable LNRGDF Wethod: Least Squares Date: 05/06/16 Time: $23: 21$ Sample: 148 Included obsenvations: 48											
Variable				Coefficient		Std. Error		t-Statistic		Prob.	
		C			$\begin{array}{r} .875662 \\ .031490 \\ \hline \end{array}$	$\begin{aligned} & 0.009 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 9759 \\ & 9347 \end{aligned}$	$\begin{aligned} & 807.01 \\ & 90.81 \end{aligned}$			$\begin{aligned} & 0.0000 \\ & 0.0000 \\ & \hline \end{aligned}$
R-squared				(10.994454		Wean dependent var				8.647156	
Adjusted R-squared				0.994333		S.D. dependent var				0.442081	
S.E. of regression				0.033280		Akaike info criterion				-3.926967	
Sum squared resid				0.050947		Schwar criterion				-3.849001	
Log likelihood				$\begin{aligned} & 96.24722 \\ & 8247.634 \end{aligned}$		Hannan-Quinn criter.				-3.897504	
F-statistic						Durbin-watson stat				0.347739	
Prob(F-statistic)				01.000000							

Example: Interpretation

- over the period of 1960-2007, the USA's real GDP had been increasing at the rate of 3.15% per year
- the growth rate is statistically significant
- what is the interpretation of the intercept?
- take anti-log $(7.8756)=2632.27$ which is the estimated value of real GDP in 1960

Regressors in Log Form

$$
\begin{gather*}
Y_{i}=\beta_{1}+\beta_{2} \ln X_{i}+u_{i} \tag{9}\\
\beta_{2}=\frac{\text { absolute change in } Y}{\text { change in } \ln X}=\frac{\Delta Y}{\Delta X / X} \tag{10}
\end{gather*}
$$

- a change in the log of a number is a relative change, or percentage change, after multiplying by 100
- β_{2} is the absolute change in Y responding to a percentage [or relative] change in X
- if X increases by 100%, predicted Y increases by B_{2} units

Example: Engel Expenditure Functions

- the share of expenditure on food decreases as total expenditure increases
- table 2.8 data on food consumed at home Exfood and total household expenditure Expend
- both in dollars for 869 US households in 1995
- regress the share of food expenditure sfdho on the log of total expenditure lnexpend

Example: EViews output

View	Proc	Object	Print	Name	Freeze	Estimate	Forecast	Stats	Resid			
Dependent Variable SFDHO Method: Least Squares Date: 05/07/16 Time: 1331 Sample: 1869 Included obsentations: 869												
Variable				Coefficient		Std. Error		t-Statistic		Prob.		
C LNEXPEND				$\begin{array}{r} 0.930387 \\ -0.077737 \end{array}$		$\begin{aligned} & 0.036367 \\ & 0.003591 \end{aligned}$		$\begin{array}{r} 25.58359 \\ -21.64823 \end{array}$		0.0000		
				0.0000								
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)						0.350876 Mean dependent var 0.144736						
				0.350127		S.D. dependent var				0.085283		
				0.068750		Akaike info criterion				-2.514368		
				4.097984		Schwar criterion				-2.503396		
				1094.493468.6456						-2.510170		
					1.968386							
				0.000000 -								

Example: Interpretation

- estimated coefficients are individually highly statistically significant
- if total expenditure increases by 1%, on average, the share of expenditure on food goes down by about 0.0008 units
- divide the slope coefficient by 100
- supporting engel hypothesis
- or if total expenditure increases by 100%, on average, the share of expenditure on food goes down by about 0.8 units

What Data Tell

(1) Linear Models

(2) Log Models

(3) Reciprocal Models

(4) Polynomial Models

 ய İSOCIETY
Inverse Model

$$
\begin{equation*}
Y_{i}=\beta_{1}+\beta_{2}\left(\frac{1}{X_{i}}\right)+u_{i} \tag{11}
\end{equation*}
$$

- note that
- as X increases indefinitely, the term $\beta_{2}\left(\frac{1}{X_{i}}\right)$ approaches zero and Y approaches the limiting or asymptotic value B_{1}
- the slope is

$$
\frac{d Y}{d X}=-\beta_{2}\left(\frac{1}{X^{2}}\right)
$$

- if β_{2} is positive, the slope is negative throughout
- if β_{2} is is negative the slope is positive throughout

Example: Food Expenditure Revisited

$$
\begin{equation*}
\text { sfdho }=\beta_{1}+\beta_{2} \frac{1}{\text { expend }_{i}}+u_{i} \tag{12}
\end{equation*}
$$

Example: EViews Output

Dependent Variable SFDHO
Method: Least Squares
Date: 05/07/16 Time: 16:29
Sample: 1869
Included observations: 869

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0.077263	0.004012	19.25950	0.0000
EXPEND_REC	1331.338	63.95713	20.81610	0.0000
R-squared	(0.333236 Mean dependentvar			0.144736
Adjusted R-squared	$\begin{aligned} & 8.332467 \\ & 0.069678 \end{aligned}$	S.D. dependent var		0.085283
S.E. of regression		Akaike info criterion		-2.487556
Sum squared resid	$\begin{aligned} & 0.069678 \\ & 4.209346 \end{aligned}$	Schwar crite		-2.476584
Log likelihood	$\begin{array}{r} 1092.843 \\ 433.3100 \end{array}$	Hannan-Quinn criter.		-2.483357
F-statistic		Durbin-wats	stat	1.997990
Prob(F-statistic)	0.000000			

Example: Interpretation

- both regression coefficients are statistically highly significant
- the intercept
- if total expenditure increases indefinitely, the share of food in total expenditure will eventually settle down to about 8%
- slope coefficient β_{2}
- positive suggesting that the rate of change of sfdho with respect to total expenditure will be negative throughout

(1) Linear Models

(3) Reciprocal Models

(4) Polynomial Models

Quadratic Function

- the following regression predicts GDP is an example of a quadratic function, or more generally, a second-degree polynomial in the variable time

$$
\begin{equation*}
R G D P_{t}=A_{1}+A_{2} \text { time }+A_{3} \text { time }^{2}+u_{t} \tag{13}
\end{equation*}
$$

- the slope is nonlinear and equal to

$$
\frac{d R G D P}{\text { time }}=A_{2}+2 A_{3} \text { time }
$$

MODEL	FORM	SLOPE	ELASTICITY
	$Y=B_{1}+B_{2} X$	$\left(\frac{d Y}{d X}\right)$	$\frac{d Y}{d X} \cdot \frac{X}{Y}$
Linear	$\ln Y=B_{1}+\ln X$	B_{2}	$B_{2}\left(\frac{X}{Y}\right)$
Log-linear	$\ln Y=B_{1}+B_{2} X$	$\left.B_{2}\right)$	B_{2}
Log-lin	$Y=B_{1}+B_{2} \ln X$	$B_{2}\left(\frac{1}{X}\right)$	$B_{2}\left(\frac{X}{X}\right)$
Lin-log	$Y=B_{1}+B_{2}\left(\frac{1}{X}\right)$	$-B_{2}\left(\frac{1}{X^{2}}\right)$	$-B_{2}\left(\frac{1}{X Y}\right)$
Reciprocal			

