## ES1004 Econometrics by Example

Lecture 11: ARCH and GARCH Models

### Dr. Hany Abdel-Latif

Swansea University, UK

Gujarati textbook, second edition [chapter 15]



15th October 2016

Dr. Hany Abdel-Latif (2016)

ES1004ebe Lecture 11

ARCH & GARCH 1 / 38

## Time Series Econometrics

- stationary and nonstationary time series
- cointegration and error correction models
- asset price volatility: the ARCH and GARCH models
- economic forecasting
- previous course on time series econometrics





글 에 에 글 어

## Volatility Clustering

- financial time series, such as stock prices, interest rates, foreign exchange rates, often exhibit volatility clustering
  - periods of turbulence: prices show wide swings; and
  - periods of tranquillity: there is a relative calm
- various sources of news and other economic events may have an impact on the time series pattern of asset prices
  - news can lead to various interpretations, and economic events like an oil crisis can last for some time
  - so we often observe the large positive and large negative observations in financial time series to appear in clusters



- 4 同 6 4 日 6 4 日 6

## Real and Financial Impacts

- such swings in oil prices and credit crises have serious effects
- investors are concerned about the
  - rate of return on their investment
  - risk of investment and the variability or volatility of risk
- it is important to measure asset price and asset returns volatility



## Measuring Volatility

- a simple measure of asset return volatility is its variance over time
- variance by itself does not capture volatility clustering
  - subtract the mean value from individual values, square the difference and divide it by the number of observations
  - a measure of unconditional variance
  - a single number of a given sample
  - does not take into account the past history (time-varying volatility)



・ 伺 ト ・ ヨ ト ・ ヨ ト

- autoregressive conditional heteroscedasticity
- a measure that takes into account the past history (time-varying volatility)
- in time series data involving asset returns, such as returns on stocks or foreign exchange, we observe autocorrelated heteroscedasticity



## Autocorrelated Heteroscedasticity

- heteroscedasticity, or unequal variance, in cross section data because of the heterogeneity among individual cross-section units
- in time series data, we usually observe autocorrelation
- in financial data we observe autocorrelated heteroscedasticity
  - i.e., heteroscedasticity observed over different periods is autocorrelated
- in the literature, this phenomenon called ARCH effect



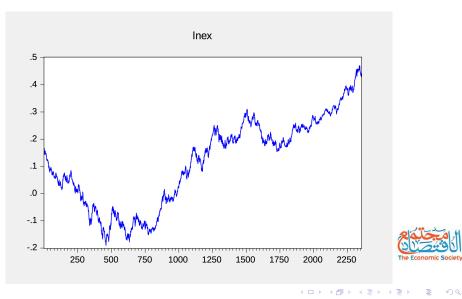
## Example: Exchange Rate

- data table13\_1.xls
  - the exchange rate between the us dollar and the euro EX; dollars per unit of euro
  - daily from January 4, 2000 to May 8,2008 [2355 observations]
  - are not continuous; exchange rate markets are not always open every day and because of holidays
  - see figure next slide



・ 同 ト ・ ヨ ト ・ ヨ ト

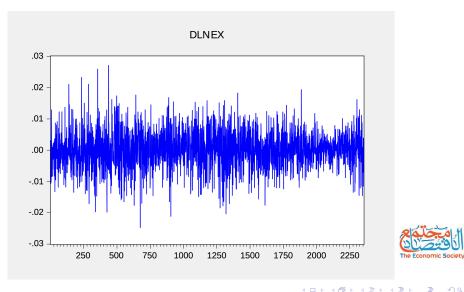
## Exchange Rate: Log



Dr. Hany Abdel-Latif (2016)

ARCH & GARCH 9 / 38

## Exchange Rate: Log-changes



Dr. Hany Abdel-Latif (2016)

ES1004ebe Lecture 11

ARCH & GARCH 1

10 / 38

## Variance vs. Volatility

- the variance of a random variable is a measure of the variability in the values of the random variable
- for our data on daily exchange rate returns
  - the mean is about 0.000113 or 0.0113%
  - the variance is about 0.0000351
- this variance does not capture the volatility of the daily exchange rate return seen in previous figure
- because it does not take into account the variation in the amplitudes noticed in the figure



∃ → ( ∃ →

## Measuring Volatility

• a simple way to measure volatility

 $RET_t = c + u_t$ 

where  $RTE_t$  daily return, c a constant,  $u_t$  error term

• if we obtain the residuals  $e_t$  and square them, you get the plot in the next slide



## Regression

#### Dependent Variable: DLNEX Method: Least Squares Date: 10/15/16 Time: 09:23 Sample (adjusted): 2 2355 Included observations: 2354 after adjustments

| Variable                                                                                                           | Coefficient                                                          | Std. Error                                                                      | t-Statistic             | Prob.                                                       |
|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------|
| С                                                                                                                  | 0.000113                                                             | 0.000122                                                                        | 0.924529                | 0.3553                                                      |
| R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>Log likelihood<br>Durbin-Watson stat | 0.000000<br>0.000000<br>0.005926<br>0.082642<br>8732.434<br>1.995294 | Mean depend<br>S.D. depende<br>Akaike info cri<br>Schwarz criter<br>Hannan-Quin | nt var<br>terion<br>ion | 0.000113<br>0.005926<br>-7.418381<br>-7.415932<br>-7.417489 |

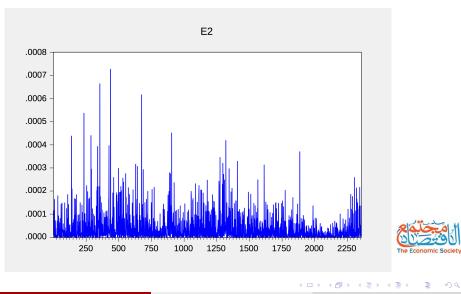


3

13 / 38

Volatility

## Squared Residuals



Dr. Hany Abdel-Latif (2016)

ES1004ebe Lecture 11

ARCH & GARCH 14 / 38

## Measuring Volatility

- wide swings in the squared residuals can be taken as an indicator for underlying volatility
- in the squared residual figure observe there
  - clusters of periods when volatility is high and clusters of periods when volatility is low
  - these clusters seems to be autocorrelated
  - when volatility is high, it continues to be high for quite some time
  - when volatility is low, it continues to be low for a while



 $Y_t | I_{t-1} = \alpha + \beta X_t + u_t$ 

- $Y_t$  exchange rate return,  $X_t$  one variable or a vector of variables
- conditional on the information available up to time (t 1), the value of the random variable  $Y_t$  is a function of the variable  $X_t$  and  $u_t$

$$u_t|I_{t-1} \sim iid N(0, \sigma_t^2)$$



3

イロト 不得下 イヨト イヨト

**ARCH & GARCH** 

- in the CLARM it is assumed that  $\sigma_t^2 = \sigma^2$  homoscedastic variance
- but to take into account the ARCH effect, we let

$$\sigma_t^2 = \lambda_0 + \lambda_1 u_{t-1}^2$$

• we assume that the error variance at time *t* is equal to some constant plus a constant multiplied by the squared error term in the previous time period



$$\sigma_t^2 = \lambda_0 + \lambda_1 u_{t-1}^2$$

• if  $\lambda_1 = 0$ 

- the error variance is homoscedastic
- the framework of the CLRM applies



3

< □ > < □ > < □ > < □ > < □ > < □ >

$$\sigma_t^2 = \lambda_0 + \lambda_1 u_{t-1}^2$$

- coefficients of this equation should be positive because the variance cannot be a negative number
- it is assumed that  $0 < \lambda_1 < 1$



э

$$Y_t | I_{t-1} = \alpha + \beta X_t + u_t$$

• after taking the mathematical expectation on both sides

 $\alpha + \beta X_t \qquad \text{the conditional mean equation}$  $\sigma_t^2 = \lambda_0 + \lambda_1 u_{t-1}^2 \qquad \text{the conditional variance equation}$ 

• both conditional on the information set  $I_{t-1}$ 



イロト 不得下 イヨト イヨト 二日

# ARCH(p)

$$\sigma_t^2 = \lambda_0 + \lambda_1 u_{t-1}^2$$

- this equation known as ARCH(1) model
  - includes only one lagged squared value of the error term
- this model can be easily extended to an ARCH(p) model, where we have p lagged squared error terms

$$\sigma_t^2 = \lambda_0 + \lambda_1 u_{t-1}^2 + \lambda_2 u_{t-2}^2 + \dots + \lambda_p u_{t-p}^2$$



・ 伺 ト ・ ヨ ト ・ ヨ ト

## Testing ARCH Effect

$$\sigma_t^2 = \lambda_0 + \lambda_1 u_{t-1}^2 + \lambda_2 u_{t-2}^2 + \dots + \lambda_p u_{t-p}^2$$

- if there is an ARCH effect, it can be tested by the statistical significance of the estimated  $\lambda$  coefficients
- if they are significantly different from zero, we can conclude that there is an ARCH effect



A B M A B M

## Estimation

$$\sigma_t^2 = \lambda_0 + \lambda_1 u_{t-1}^2 + \lambda_2 u_{t-2}^2 + \dots + \lambda_p u_{t-p}^2$$

• since the u are not directly observable, we use the estimated residuals

$$\hat{u} = Y_t - \hat{\alpha}_t - \beta \hat{X}_t$$

• then we estimate the following model

$$\hat{u}_t^2 = \lambda_0 + \lambda_1 \hat{u}_{t-1}^2 + \lambda_2 \hat{u}_{t-2}^2 + \dots + \lambda_p \hat{u}_{t-p}^2$$



ES1004ebe Lecture 11

B> B

$$\hat{u}_t^2 = \lambda_0 + \lambda_1 \hat{u}_{t-1}^2 + \lambda_2 \hat{u}_{t-2}^2 + \dots + \lambda_p \hat{u}_{t-p}^2$$

- AR we are regressing squared residuals on its lagged values going back to *p* periods
- CH variance is conditional on the information available up to time (t - 1)



A B M A B M

#### The Model

## ARCH(8) OLS Estimation

Dependent Variable: E2 Method: Least Squares Date: 10/15/16 Time: 14:24 Sample (adjusted): 10 2355 Included observations: 2346 after adjustments

|         | Variable      | Coefficient | Std. Error     | t-Statistic | Prob.                                  |
|---------|---------------|-------------|----------------|-------------|----------------------------------------|
|         | С             | 2.57E-05    | 2.21E-06       | 11.62358    | 0.0000                                 |
|         | E2(-1)        | -0.005920   | 0.020674       | -0.286340   | 0.7746                                 |
|         | E2(-2)        | 0.009899    | 0.020645       | 0.479485    | 0.6316                                 |
|         | E2(-3)        | 0.022836    | 0.020603       | 1.108414    | 0.2678                                 |
|         | E2(-4)        | 0.060409    | 0.020591       | 2.933721    | 0.0034                                 |
|         | E2(-5)        | 0.037337    | 0.020588       | 1.813520    | 0.0699                                 |
|         | E2(-6)        | 0.064005    | 0.020596       | 3.107659    | 0.0019                                 |
|         | E2(-7)        | 0.047062    | 0.020631       | 2.281178    | 0.0226                                 |
|         | E2(-8)        | 0.031118    | 0.020654       | 1.506680    | 0.1320                                 |
| R-squ   | Jared         | 0.014311    | Mean depend    | lent var    | 3.50E-05                               |
| Adjue   | ted R-squared | 0.010936    | S.D. depende   | ent ver     | 5.94E-05                               |
| S.É. 0  | f regression  | 5.90E-05    | Akaike info cr | iterion     | -16.63271                              |
| Sums    | squared resid | 8.15E-06    | Schwarz crite  | rion        | -16.61061                              |
| Log lil | kelihood      | 19519.17    | Hannan-Quin    | in criter.  | -16.62466                              |
| F-stat  | istic         | 4.241191    | Durbin-Watso   | on stat     | 1.998521                               |
| Prob(l  | F-statistic)  | 0.000045    |                |             |                                        |
|         |               |             |                |             | <ul> <li>&lt; □ &lt; &lt; □</li> </ul> |



3

Dr. Hany Abdel-Latif (2016)

ARCH & GARCH

25 / 38

## Estimation of ARCH Model

- the maximum likelihood approach
  - an advantage of the ML method is that we estimate the mean and variance functions simultaneously
  - statistical packages such as stata and eviews, have built-in routines to estimate ARCH models



## ARCH(8) ML Estimation

| 🔵 🔘 🔍 Equation                                                                                        | on Estimation                                     |  |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------------|--|
| Specification Options                                                                                 |                                                   |  |
| Mean equation<br>Dependent followed by regressors & ARM<br>dinex c                                    | IA terms OR explicit equation:<br>ARCH-M:<br>None |  |
| Variance and distribution specification<br>Model: GARCH/TARCH<br>Order:<br>ARCH: 8 Ihreshold order: 0 | Variance regressors:                              |  |
| GARCH: 0<br>Restrictions: None                                                                        | Error distribution:                               |  |
| Estimation settings<br>Method: ARCH - Autoregressive Conditi<br>Sample: 1 2355                        | ional Heteroskedasticity                          |  |



27 / 38

ARCH & GARCH

Dr. Hany Abdel-Latif (2016)

ES1004ebe Lecture 11

## ARCH(8) ML Estimation

Dependent Variable: DLNEX Method: ML ARCH - Normal distribution (BFGS / Marquardt steps) Date: 10/15/16 Time: 14:48 Sample (adjusted): 2 2355 Included observations: 2354 after adjustments Covergence achieved after 15 iterations Coefficient covariance computed using outer product of gradients Presample variance: backcast (parameter = 0.7) GARCH = C(2) + C(3)\*RESID(-1)\*2 + C(4)\*RESID(-2)\*2 + C(5)\*RESID(-3)\*2 + C(6)\*RESID(-4)\*2 + C(7)\*RESID(-5)\*2 + C(8)\*RESID(-6)\*2 + C(9) \*TERCHORE ONE OF COMPARISHIP (C10)\*2 + C(9)\*CESID(-6)\*2 + C(9)\*CESID(-6)\*CESID(-6)\*2 + C(9)\*CESID(-6)\*CESID(-6)\*CESID(-6)\*CESID(-6)\*CESID

\*RESID(-7)^2 + C(10)\*RESID(-8)^2

| _ |                   | () ·· ( -) - | -               |             |           |
|---|-------------------|--------------|-----------------|-------------|-----------|
|   | Variable          | Coefficient  | Std. Error      | z-Statistic | Prob.     |
|   | С                 | 0.000169     | 0.000116        | 1.461982    | 0.1437    |
|   |                   | Variance E   | quation         |             |           |
| _ | С                 | 2.16E-05     | 1.57E-06        | 13.76182    | 0.0000    |
|   | RESID(-1)^2       | 0.003932     | 0.014396        | 0.273141    | 0.7847    |
|   | RESID(-2)^2       | 0.016986     | 0.020145        | 0.843199    | 0.3991    |
|   | RESID(-3)^2       | 0.030099     | 0.016475        | 1.827011    | 0.0677    |
|   | RESID(-4)^2       | 0.058977     | 0.022443        | 2.627792    | 0.0086    |
|   | RESID(-5)^2       | 0.061454     | 0.025199        | 2.438777    | 0.0147    |
|   | RESID(-6)^2       | 0.088798     | 0.023936        | 3.709831    | 0.0002    |
|   | RESID(-7)^2       | 0.058582     | 0.020295        | 2.886554    | 0.0039    |
|   | RESID(-8)^2       | 0.076217     | 0.023279        | 3.274017    | 0.0011    |
| _ | TREBIB ( by E     | 0.010211     | 0.020210        | 0.21 1021   | 0.0011    |
| R | -squared          | -0.000090    | Mean depend     | ent var     | 0.000113  |
|   | djusted R-squared | -0.000090    | S.D. depende    |             | 0.005926  |
|   | .E. of regression | 0.005927     | Akaike info cri |             | -7.435345 |
|   | um squared resid  | 0.082650     | Schwarz criter  |             | -7.410860 |
|   | og likelihood     | 8761.401     | Hannan-Quin     |             | -7.426428 |
|   | urbin-Watson stat | 1.995115     | naman Quin      | n ontor.    | 1.420420  |
| - | aron watour stat  | 1.555115     |                 |             |           |



э.

Dr. Hany Abdel-Latif (2016)

ES1004ebe Lecture 11

ARCH & GARCH 28 / 38

## ARCH(8) ML Estimation

Dependent Variable: DLNEX Method: ML ARCH - Normal distribution (BFGS / Marquardt steps) Date: 10/15/16 Time: 14:48 Sample (adjusted): 2 2355 Included observations: 2354 after adjustments Convergence achieved after 15 iterations Coefficient covariance computed using outer product of gradients Presample variance: backcast (parameter = 0.7) GARCH = C(2) + C(3)\*RESID(-1)^2 + C(4)\*RESID(-2)^2 + C(5)\*RESID(-3)^2 + C(6)\*RESID(-4)^2 + C(7)\*RESID(-5)^2 + C(8)\*RESID(-6)^2 + C(9) \*RESID(-7)^2 + C(10)\*RESID(-8)^2

| Variable          | Coefficient | Std. Error | z-Statistic | Prob.  |  |  |  |
|-------------------|-------------|------------|-------------|--------|--|--|--|
| С                 | 0.000169    | 0.000116   | 1.461982    | 0.1437 |  |  |  |
| Variance Equation |             |            |             |        |  |  |  |



#### The Model

# ARCH(8) ML Estimation

| Variance Equation                                                                                                                                       |                                                                                                          |                                                                                                                |                                                                                                          |                                                                                        |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|--|
| C<br>RESID(-1)^2<br>RESID(-2)^2<br>RESID(-3)^2<br>RESID(-3)^2<br>RESID(-4)^2<br>RESID(-5)^2<br>RESID(-5)^2<br>RESID(-6)^2<br>RESID(-7)^2<br>RESID(-8)^2 | 2.16E-05<br>0.003932<br>0.016986<br>0.030099<br>0.058977<br>0.061454<br>0.088798<br>0.058582<br>0.058582 | 1.57E-06<br>0.014396<br>0.020145<br>0.016475<br>0.022443<br>0.025199<br>0.023936<br>0.020295<br>0.023279       | 13.76182<br>0.273141<br>0.843199<br>1.827011<br>2.627792<br>2.438777<br>3.709831<br>2.886554<br>3.274017 | 0.0000<br>0.7847<br>0.3991<br>0.0677<br>0.0086<br>0.0147<br>0.0002<br>0.0039<br>0.0011 |  |  |  |
| R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>Log likelihood<br>Durbin-Watson stat                                      | -0.000090<br>-0.000090<br>0.005927<br>0.082650<br>8761.401<br>1.995115                                   | Mean dependent var<br>S.D. dependent var<br>Akaike info criterion<br>Schwarz criterion<br>Hannan-Quinn criter. |                                                                                                          | 0.000113<br>0.005926<br>-7.435345<br>-7.410860<br>-7.426428                            |  |  |  |

Dr. Hany Abdel-Latif (2016)

ES1004ebe Lecture 11

**ARCH & GARCH** 

イロト イヨト イヨト イヨト

30 / 38

The Economic Society

Ξ.

## Drawbacks of ARCH Model

- requires estimation of the coefficients of p autoregressive terms, which consumes several degrees of freedom
- difficult to interpret all the coefficients, especially if some of them are negative
- the OLS estimating procedure does not lend itself to estimate the mean and variance function simultaneously
- the literature suggests that any model higher than ARCH(3) is better estimated by GARCH



イロト イポト イヨト イヨト

## GARCH Model

- generalised autoregressive conditional heteroscedasticity
- we modify the variance equation to get GARCH(1,1) as follows

$$\sigma_t^2 = \lambda_0 + \lambda_1 u_{t-1}^2 + \lambda_2 \sigma_{t-1}^2$$

- conditional variance at time t depends on
  - the lagged squared error term at time (t-1), and
  - the lagged variance term at time (t-1)



# GARCH(1,1)

$$\sigma_t^2 = \lambda_0 + \lambda_1 u_{t-1}^2 + \lambda_2 \sigma_{t-1}^2$$

- it can be shown that ARCH(p) model is equivalent to GARCH(1,1) as *p* increases
- in ARCH(p) we have to estimate (p + 1) coefficients, whereas in GARCH(1,1) model we estimate only 3 coefficients
- GARCH(1,1) can be extended to GARCH(p,q) model
  - p lagged squared error terms
  - q lagged conditional variance terms
- in practice, GARCH(1,1) has proved useful to model returns on financial assets

ヘロト 人間ト ヘヨト ヘヨト

# GARCH(1,1)

|               | 🔀 Equation Estimation                                                                                                             |              |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------|
| Specification | Options                                                                                                                           |              |
| Mean equa     | ation<br>It followed by regressors & ARMA terms OR explicit equation:<br>ARCH-M:<br>None                                          |              |
| _             | Image: Image of the specification     Variance regressors:       Image: Image of the specification     Image of the specification |              |
|               |                                                                                                                                   |              |
|               | settings ARCH - Autoregressive Conditional Heteroskedasticity  1 2355                                                             | The Ec       |
| Dr. Hanv A    | bdel-Latif (2016) ES1004ebe Lecture 11                                                                                            | ARCH & GARCH |



34 / 38

Dr. Hany Abdel-Latif (2016)

ES1004ebe Lecture 11

## GARCH(1,1)

Dependent Variable: DLNEX Method: ML ARCH - Normal distribution (BFGS / Marguardt steps) Date: 10/15/16 Time: 15:12 Sample (adjusted): 2 2355 Included observations: 2354 after adjustments Convergence achieved after 37 iterations Coefficient covariance computed using outer product of gradients Presample variance: backcast (parameter = 0.7)  $GARCH = C(2) + C(3)*RESID(-1)^{2} + C(4)*GARCH(-1)$ 

| Variable                                                                                                           | Coefficie                                                  | ent                          | Std. Error                                                                | z-Statistic                      | Prob.                                                       |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------|
| С                                                                                                                  | 0.0001                                                     | 89                           | 0.000110                                                                  | 1.719603                         | 0.0855                                                      |
|                                                                                                                    | Variar                                                     | nce Ec                       | quation                                                                   |                                  |                                                             |
| C<br>RESID(-1)^2<br>GARCH(-1)                                                                                      | 7.92E-<br>0.0228<br>0.9751                                 | 42                           | 5.08E-08<br>0.004086<br>0.004415                                          | 1.559218<br>5.590757<br>220.8949 | 0.1189<br>0.0000<br>0.0000                                  |
| R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>Log likelihood<br>Durbin-Watson stat | -0.0001<br>-0.0001<br>0.0059<br>0.0826<br>8799.7<br>1.9949 | 64 9<br>27 7<br>56 9<br>24 H | Mean depen<br>S.D. depend<br>Akaike info c<br>Schwarz criti<br>Hannan-Qui | ent var<br>riterion<br>erion     | 0.000113<br>0.005926<br>-7.473003<br>-7.463209<br>-7.469436 |
| Dr. Hany Abdel-Latif                                                                                               | (2016)                                                     |                              | ES1004ebe                                                                 | Lecture 11                       |                                                             |



∃ nar

35 / 38

• modify the mean equation by explicitly introducing the risk factor, the conditional variance, to take into account the risk

$$Y_t = \alpha + \beta X_t + \gamma \sigma_t^2 + u_t$$



э

36 / 38

イロト イポト イヨト イヨト

**ARCH & GARCH** 

Dr. Hany Abdel-Latif (2016)

ES1004ebe Lecture 11

#### GARCH-M

# GARCH-M(1,1) Example

| 00                                              | 📉 Equati                          | on Estimation                                        |              |
|-------------------------------------------------|-----------------------------------|------------------------------------------------------|--------------|
| Specification C                                 | ptions                            |                                                      |              |
| Mean equation<br>Dependent f                    |                                   | 14 terms OR explicit equation:<br>ARCH-M<br>Variance |              |
| Variance and<br>Model: GAR<br>Order:<br>ARCH: 1 |                                   | Variance regressors:                                 |              |
| GAR <u>C</u> H: 1<br>Restrictions:              | None                              | Error distribution:                                  |              |
| Estimation se                                   | ttings                            |                                                      |              |
|                                                 | CH - Autoregressive Condit<br>355 | ional Heteroskedasticity                             | The Ec       |
| Dr. Hany Abc                                    | el-Latif (2016)                   | ES1004ebe Lecture 11                                 | ARCH & GARCH |



37 / 38

글에 귀절에 드릴.

#### GARCH-M

## GARCH-M(1,1) Example

Dependent Variable: DLNEX Method: ML ARCH - Normal distribution (BFGS / Marguardt steps) Date: 10/15/16 Time: 15:26 Sample (adjusted): 2 2355 Included observations: 2354 after adjustments Convergence achieved after 42 iterations Coefficient covariance computed using outer product of gradients Presample variance: backcast (parameter = 0.7)  $GARCH = C(3) + C(4)*RESID(-1)^{2} + C(5)*GARCH(-1)$ 

| Variable                                                                                                           | Coefficient                                                          | Std. Error                                                                    | z-Statistic                      | Prob.                                                       |              |
|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------|--------------|
| GARCH<br>C                                                                                                         | -19.30676<br>0.000780                                                | 9.607256<br>0.000316                                                          | -2.009602<br>2.466145            | 0.0445<br>0.0137                                            |              |
|                                                                                                                    | Variance                                                             | Equation                                                                      |                                  |                                                             |              |
| C<br>RESID(·1)^2<br>GARCH(·1)                                                                                      | 8.07E-08<br>0.022576<br>0.975357                                     | 4.96E-08<br>0.003982<br>0.004321                                              | 1.627226<br>5.668816<br>225.6993 | 0.1037<br>0.0000<br>0.0000                                  |              |
| R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>Log likelihood<br>Durbin-Watson stat | 0.001562<br>0.001138<br>0.005923<br>0.082513<br>8802.092<br>1.998161 | Mean depend<br>S.D. depende<br>Akaike info cr<br>Schwarz crite<br>Hannan-Quin | ent var<br>iterion<br>rion       | 0.000113<br>0.005926<br>-7.474165<br>-7.461922<br>-7.469706 |              |
| Dr. Hany Abdel-Latif                                                                                               |                                                                      | ES1004ebe                                                                     | Lecture 11                       |                                                             | ARCH & GARCH |



∃ nar

38 / 38





Dr. Hany Abdel-Latif (2016)

ES1004ebe Lecture 11

ARCH & GARCH 39 / 38