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Time Series Econometrics

13 stationary and nonstationary time series
14 cointegration and error correction models
15 asset price volatility: the ARCH and GARCH models
16 economic forecasting

previous course on time series econometrics
ES1002 Lectures

ES1002 EViews
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Financial Time Series Properties

Volatility Clustering

financial time series, such as stock prices, interest rates, foreign
exchange rates, often exhibit volatility clustering

periods of turbulence: prices show wide swings; and
periods of tranquillity: there is a relative calm

various sources of news and other economic events may have an
impact on the time series pattern of asset prices

news can lead to various interpretations, and economic events like an
oil crisis can last for some time
so we often observe the large positive and large negative observations
in financial time series to appear in clusters
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Financial Time Series Properties

Real and Financial Impacts

such swings in oil prices and credit crises have serious effects
investors are concerned about the

rate of return on their investment
risk of investment and the variability or volatility of risk

it is important to measure asset price and asset returns volatility
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Financial Time Series Properties

Measuring Volatility

a simple measure of asset return volatility is its variance over time
variance by itself does not capture volatility clustering

subtract the mean value from individual values, square the difference
and divide it by the number of observations
a measure of unconditional variance
a single number of a given sample
does not take into account the past history (time-varying volatility)
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ARCH Meaning

The ARCH Model

autoregressive conditional heteroscedasticity
a measure that takes into account the past history (time-varying
volatility)
in time series data involving asset returns, such as returns on stocks
or foreign exchange, we observe autocorrelated heteroscedasticity
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ARCH Meaning

Autocorrelated Heteroscedasticity

heteroscedasticity, or unequal variance, in cross section data because
of the heterogeneity among individual cross-section units
in time series data, we usually observe autocorrelation
in financial data we observe autocorrelated heteroscedasticity

i.e., heteroscedasticity observed over different periods is autocorrelated

in the literature, this phenomenon called ARCH effect
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ARCH Example

Example: Exchange Rate

data table13_1.xls
the exchange rate between the us dollar and the euro EX; dollars per
unit of euro
daily from January 4, 2000 to May 8,2008 [2355 observations]
are not continuous; exchange rate markets are not always open every
day and because of holidays
see figure next slide
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ARCH Example

Exchange Rate: Log
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ARCH Example

Exchange Rate: Log-changes
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ARCH Volatility

Variance vs. Volatility

the variance of a random variable is a measure of the variability in the
values of the random variable
for our data on daily exchange rate returns

the mean is about 0.000113 or 0.0113%
the variance is about 0.0000351

this variance does not capture the volatility of the daily exchange rate
return seen in previous figure
because it does not take into account the variation in the amplitudes
noticed in the figure
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ARCH Volatility

Measuring Volatility

a simple way to measure volatility

RETt = c + ut

where RTEt daily return, c a constant, ut error term
if we obtain the residuals et and square them, you get the plot in the
next slide
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ARCH Volatility

Regression
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ARCH Volatility

Squared Residuals
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ARCH Volatility

Measuring Volatility

wide swings in the squared residuals can be taken as an indicator for
underlying volatility
in the squared residual figure observe there

clusters of periods when volatility is high and clusters of periods when
volatility is low
these clusters seems to be autocorrelated
when volatility is high, it continues to be high for quite some time
when volatility is low, it continues to be low for a while
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ARCH The Model

The ARCH Model

Yt |It−1 = α+ βXt + ut

Yt exchange rate return, Xt one variable or a vector of variables

conditional on the information available up to time (t − 1), the value
of the random variable Yt is a function of the variable Xt and ut

ut |It−1 ∼ iid N(0, σ2
t )
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ARCH The Model

The ARCH Model

in the CLARM it is assumed that σ2
t = σ2 homoscedastic variance

but to take into account the ARCH effect, we let

σ2
t = λ0 + λ1u2

t−1

we assume that the error variance at time t is equal to some constant
plus a constant multiplied by the squared error term in the previous
time period
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ARCH The Model

The ARCH Model

σ2
t = λ0 + λ1u2

t−1

if λ1 = 0
- the error variance is homoscedastic
- the framework of the CLRM applies
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ARCH The Model

The ARCH Model

σ2
t = λ0 + λ1u2

t−1

coefficients of this equation should be positive because the variance
cannot be a negative number
it is assumed that 0 < λ1 < 1
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ARCH The Model

The ARCH Model

Yt |It−1 = α+ βXt + ut

after taking the mathematical expectation on both sides
α+ βXt the conditional mean equation

σ2
t = λ0 + λ1u2

t−1 the conditional variance equation
both conditional on the information set It−1
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ARCH The Model

ARCH(p)

σ2
t = λ0 + λ1u2

t−1

this equation known as ARCH(1) model
includes only one lagged squared value of the error term

this model can be easily extended to an ARCH(p) model, where we
have p lagged squared error terms

σ2
t = λ0 + λ1u2

t−1 + λ2u2
t−2 + · · ·+ λpu2

t−p
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ARCH The Model

Testing ARCH Effect

σ2
t = λ0 + λ1u2

t−1 + λ2u2
t−2 + · · ·+ λpu2

t−p

if there is an ARCH effect, it can be tested by the statistical
significance of the estimated λ coefficients
if they are significantly different from zero, we can conclude that
there is an ARCH effect
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ARCH The Model

Estimation

σ2
t = λ0 + λ1u2

t−1 + λ2u2
t−2 + · · ·+ λpu2

t−p

since the u are not directly observable, we use the estimated residuals

û = Yt − α̂t − βX̂t

then we estimate the following model

û2
t = λ0 + λ1û2

t−1 + λ2û2
t−2 + · · ·+ λpû2

t−p
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ARCH The Model

The ARCH Model

û2
t = λ0 + λ1û2

t−1 + λ2û2
t−2 + · · ·+ λpû2

t−p

AR we are regressing squared residuals on its lagged values going
back to p periods
CH variance is conditional on the information available up to time
(t − 1)
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ARCH The Model

ARCH(8) OLS Estimation
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ARCH The Model

Estimation of ARCH Model

the maximum likelihood approach
an advantage of the ML method is that we estimate the mean and
variance functions simultaneously
statistical packages such as stata and eviews, have built-in routines to
estimate ARCH models
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ARCH The Model

ARCH(8) ML Estimation
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ARCH The Model

ARCH(8) ML Estimation
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ARCH The Model

ARCH(8) ML Estimation
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ARCH The Model

ARCH(8) ML Estimation
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ARCH Drawbacks

Drawbacks of ARCH Model

requires estimation of the coefficients of p autoregressive terms, which
consumes several degrees of freedom
difficult to interpret all the coefficients, especially if some of them are
negative
the OLS estimating procedure does not lend itself to estimate the
mean and variance function simultaneously
the literature suggests that any model higher than ARCH(3) is better
estimated by GARCH
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GARCH The Model

GARCH Model

generalised autoregressive conditional heteroscedasticity
we modify the variance equation to get GARCH(1,1) as follows

σ2
t = λ0 + λ1u2

t−1 + λ2σ
2
t−1

conditional variance at time t depends on
the lagged squared error term at time (t − 1), and
the lagged variance term at time (t − 1)
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GARCH The Model

GARCH(1,1)

σ2
t = λ0 + λ1u2

t−1 + λ2σ
2
t−1

it can be shown that ARCH(p) model is equivalent to GARCH(1,1) as
p increases
in ARCH(p) we have to estimate (p + 1) coefficients, whereas in
GARCH(1,1) model we estimate only 3 coefficients
GARCH(1,1) can be extended to GARCH(p,q) model

p lagged squared error terms
q lagged conditional variance terms

in practice, GARCH(1,1) has proved useful to model returns on
financial assets
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GARCH Example

GARCH(1,1)
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GARCH Example

GARCH(1,1)
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GARCH Extensions GARCH-M

The GARCH-M Model

modify the mean equation by explicitly introducing the risk factor, the
conditional variance, to take into account the risk

Yt = α+ βXt + γσ2
t + ut
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GARCH Extensions GARCH-M

GARCH-M(1,1) Example
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GARCH Extensions GARCH-M

GARCH-M(1,1) Example
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Questions & Answers
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