ES1004 Econometrics by Example

Lecture 10: Cointegration and Error Correction

Dr. Hany Abdel-Latif

Swansea University, UK

Gujarati textbook, second edition [chapter 14]

1 / 31

1st October 2016

Dr. Hany Abdel-Latif (2016)

ES1004ebe Lecture 10

Cointegration & ECM

Time Series Econometrics

- stationary and nonstationary time series
- cointegration and error correction models
- asset price volatility: the ARCH and GARCH models
- economic forecasting
- previous course on time series econometrics

- 3

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Stationarity

- regression analysis of time series data assumes that series are stationary
 - its mean and variance are constant over time
 - covariance depends only on the distance between the two periods and not on time
 - a time series with these characteristics is know as weakly or covariance stationary

くほう くほう

Nonstationarity and Superior Regression

- regressions of nonstationary time series may result in
 - a high R² value
 - statistically significant regression coefficients
- these results are more likely to be misleading or spurious
 - regressions of trending variables often give sginficant t and F statistics and a high R^2
 - there is no real relationship between them because each variable is growing over time
 - usually associated with very low durbin-watson d statistic $[R^2 > d]$
 - a false, spurious, misleading regression

Superior Regression: Example

 egyptian infant mortality rate (Y), 1971-1990, on gross aggregate income of american farmers (I) and total Honduran money supply (M)

$$\hat{Y} = 179.9 - .2952 I - .0439 M, \ D/W = .4752, F = 95.17$$

Corr = .8858, -.9113, -.9445 t ratios in parentheses

- no logical reason for the observed relationship among the variables
- variables seem to be trending over time
- see more examples of spurious regression [click here]

5 / 31

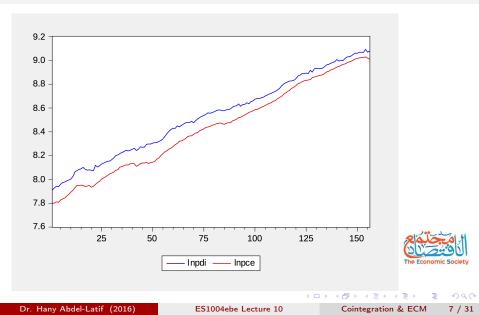
イロト イポト イヨト イヨト 二日

Consumption Expenditure on Disposable Income

- table14.1 usa quarterly data 1970-2008 [156 observations]
- personal consumption expenditure and personal disposable income
- data are in billions of 2000 dollars

4 3 5 4 3 5

PCE and PDI Plot I



Example

PCE and PDI Plot II

- the figure shows that both Inpdi and Inpce are trending series
- suggests that theses series are not stationary
- can be confirmed by unit root analysis (e.g., ADF test)
- both series has have a unit root, or stochastic trend

4 3 5 4 3 5

Nonstationary PDI

Null Hypothesis: LNPDI has a unit root Exogenous: Constant, Linear Trend Lag Length: 1 (Automatic - based on AIC, maxlag=1)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ller test statistic 1% level 5% level 10% level	-2.774819 -4.018748 -3.439267 -3.143999	0.2089

*MacKinnon (1996) one-sided p-values.

э

Dr. Hany Abdel-Latif (2016)

ES1004ebe Lecture 10

(人間) トイヨト イヨト

Nonstationary PCE

Null Hypothesis: LNPCE has a unit root Exogenous: Constant, Linear Trend

Lag Length: 1 (Automatic - based on AIC, maxlag=1)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ller test statistic 1% level 5% level 10% level	-2.038426 -4.018748 -3.439267 -3.143999	0.5754

*MacKinnon (1996) one-sided p-values.

3

Dr. Hany Abdel-Latif (2016)

ES1004ebe Lecture 10

PCE and PDI Regression

Dependent Variable: LNPCE Method: Least Squares Date: 09/30/16 Time: 17:47 Sample: 1 156 Included observations: 156

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LNPDI	-0.842510 1.086822	0.033717 0.003949	-24.98751 275.2418	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.997971 0.997958 0.016567 0.042269 419.3024 75758.02 0.000000	Mean depend S.D. depende Akaike info cri Schwarz critel Hannan-Quin Durbin-Watsc	nt var iterion rion n criter.	8.430699 0.366642 -5.350030 -5.310929 -5.334149 0.367188

3

PCE and PDI Regression

- notice that $R^2 > d = 0.3672$
 - this raises the possibility that this regression might be spurious
 - due to regressing stochastic trend series
- durbin-watson *d* statistic suggests that the error term suffers from first-order autocorrelation
- elasticity of personal consumption expenditure of 1.08 with respect to PDI [greater than 1 which seems high]

12 / 31

A B M A B M

PCE and PDI Regression

- both series are trending
- let us add a trend variable
 - a catch-all for all other variables might affect both regressand and regressors
 - e.g., as population increases both PCE and PDI also increase
 - note that we could have either added population as an additional regressor or preferably to consider PCE and PDI on a per capita basis

13 / 31

A B A A B A

PCE and PDI Regression with A Trend

Dependent Variable: LNPCE Method: Least Squares Date: 10/01/16 Time: 15:32 Sample: 1 156 Included observations: 156

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LNPDI TIME	1.672968 0.770241 0.002366	0.487339 0.061316 0.000457	3.432860 12.56179 5.172271	0.0008 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.998273 0.998251 0.015335 0.035978 431.8715 44226.64 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watsc	nt var iterion rion n criter.	8.430699 0.366642 -5.498352 -5.439701 -5.474531 0.261692

3

PCE and PDI Regression with A Trend

- the elasticity of PCE with respect to PDI is now less than unity
- the trend variable is statistically significant
- allowing for linear trend, the relationship between the two variables is strongly positive
- but notice again the low *d* value, which suggests that results are plagued by autocorrelation
- or maybe this regression too is spurious

15 / 31

Dr. Hany Abdel-Latif (2016)

ES1004ebe Lecture 10

< □ > < □ > < □ >
 Cointegration & ECM

Stationary Error

$$LPCE_t = \beta_1 + \beta_2 LPDI_t + \beta_3 t_t + u_t$$

rewrite this model as

$$u_t = LPCE_t - \beta_1 - \beta_2 LPDI_t - \beta_3 t_t$$

- suppose after estimating the first eq. we found that $u_t(=e_t)$ to be stationary i.e., I(0)
 - although LPCE and LPDI are individually I(1), they have stochastic trends, their combination shown in the second equation is I(0)
 - their linear combination cancels out the stochastic trends in the two series

16 / 31

A B M A B M

Stationary Error

- in that case, the regression of LPCE and LPDI is not spurious they are cointegrated
- this can be seen clearly in the graph
 - although both series are stochastically trending, they do not drift apart substantially
- two variables will be cointegrated if they have a long-run or equilibrium, relationship between them
 - according to economic theory, there is a strong relationship between consumption and disposable income

Meaning

Cointegrating Regression

$$LPCE_t = \beta_1 + \beta_2 LPDI_t + \beta_3 t_t + u_t$$

- cointegrating regression
- slope parameters $\beta_2 1$ and β_3 are cointegrating parameters

- 20

18 / 31

ES1004ebe Lecture 10

Cointegration & ECM

< A

Engle-Granger Test

- there are several tests of cointegration but we will consider only EG test
- implement ADF unit root tests on the residuals estimated for the cointegration regression

Engle-Granger: Example

Null Hypothesis: E has a unit root Exogenous: None Lag Length: 0 (Automatic - based on SIC, maxlag=0)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ller test statistic 1% level 5% level 10% level	-3.392600 -2.579967 -1.942896 -1.615342	0.0008

*MacKinnon (1996) one-sided p-values.

3

Dr. Hany Abdel-Latif (2016)

ES1004ebe Lecture 10

Unit Root and Cointegraions Tests

- tests for unit roots are performed on single time series
- cointegration deals with the relationship among a group of variables, each having a unit root
- it is better to test each series for unit roots
 - some of the series may have more than one unit root \rightarrow need to be differenced more than once to become stationary

Unit Root and Cointegraions Tests

- if two time series Y and X are integrated of different orders then the error term in the regression of Y and X is not stationary
 - this regression equation is said to be unbalanced
- if the two variables are integrated of the same order, the regression equation is said to be balanced

Equilibrating Error

- LPCE and LPDI are cointegrated i.e., have a long-term, or equilibrium, relationship
- how is this equilibrium achieved?

$$u_t = LPCE_t - \beta_1 - \beta_2 LPDI_t - \beta_3 t_t$$

• the 'equilibrating' error term that corrects deviations of LPCE from its equilibrium value given by the cointegration regression

э

• if two variables Y and X are cointegrated, the relationship between the two can be expressed as an error correction mechanism (ECM)

$$\Delta LPCE_t = A_1 + A_2 \Delta LPDI_t + A_3 u_{t-1} + v_t$$

 Δ the first difference operator u_{t-1} the lagged value of the error correction term v_t a white noise error term

24 / 31

Dr. Hany Abdel-Latif (2016)

ES1004ebe Lecture 10

$$LPCE_t = \beta_1 + \beta_2 LPDI_t + \beta_3 t_t + u_t$$

 \bullet the long-run relationship: β_2 gives the long-run impact of LPDI on LPCE

$$\Delta LPCE_t = A_1 + A_2 \Delta LPDI_t + A_3 u_{t-1} + v_t$$

 the short-run relationship: A₂ gives the immediate, or short-run, impact of ΔLPDI on ΔLPCE

$\Delta LPCE_t = A_1 + A_2 \Delta LPDI_t + A_3 u_{t-1} + v_t$

- ECM: changes in LPCE depend on changes on LPDI and the lagged equilibrium error term u_{t-1}
- if this error term u_{t-1} is zero
 - there will not be any disequilibrium between the two variables
 - long-run relationship will be given by the cointegrating relationship
- but it the error term u_{t-1} is nonzero
 - the relationship between LPCE and LPDI will be out of equilibrium

$\Delta LPCE_t = A_1 + A_2 \Delta LPDI_t + A_3 u_{t-1} + v_t$

- the absolute value A₃ will decide how quickly the equilibrium is reached
- the incorporates both the short-run and long-run dynamics
- all variables are *I*(0) stationary so we can estimate the equation using OLS

27 / 31

ECM: Example

Dependent Variable: D(LNPCE) Method: Least Squares Date: 10/01/16 Time: 17:33 Sample (adjusted): 2 156 Included observations: 155 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C D(LNPDI) E(-1)	0.005530 0.306401 -0.065247	0.000626 0.051589 0.033504	8.831326 5.939318 -1.947407	0.0000 0.0000 0.0533
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.189780 0.179120 0.006129 0.005709 571.2740 17.80173 0.000000	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watsc	nt var iterion rion n criter.	0.007825 0.006764 -7.332568 -7.273663 -7.308642 1.707361

The Economic Society

3

ECM: Example

- all coefficients are individually statistically significant at the 6% or lower level
- short-run consumption-income elasticity 0.31%
- the long-run value is given by the cointegrating regression, which is about 0.77
- the coefficient of the error-correction term -0.06
 - only about 6% of the discrepancy between long-term and short-term PCE is corrected within a quarter
 - i.e., a slow rate of adjustment to equilibrium

29 / 31

A B M A B M

Engle-Granger Shortcomings

- if you have more than three variables, there might be more than one cointegrating relationship
- once we go beyond two time series, we will have to use Johansen methodology to test for cointegrating relationships among multiple variables.

Dr. Hany Abdel-Latif (2016)

ES1004ebe Lecture 10

Cointegration & ECM